37 research outputs found

    New characterizations of the region of complete localization for random Schr\"odinger operators

    Full text link
    We study the region of complete localization in a class of random operators which includes random Schr\"odinger operators with Anderson-type potentials and classical wave operators in random media, as well as the Anderson tight-binding model. We establish new characterizations or criteria for this region of complete localization, given either by the decay of eigenfunction correlations or by the decay of Fermi projections. (These are necessary and sufficient conditions for the random operator to exhibit complete localization in this energy region.) Using the first type of characterization we prove that in the region of complete localization the random operator has eigenvalues with finite multiplicity

    Persistence of Anderson localization in Schr\"odinger operators with decaying random potentials

    Full text link
    We show persistence of both Anderson and dynamical localization in Schr\"odinger operators with non-positive (attractive) random decaying potential. We consider an Anderson-type Schr\"odinger operator with a non-positive ergodic random potential, and multiply the random potential by a decaying envelope function. If the envelope function decays slower than x2|x|^{-2} at infinity, we prove that the operator has infinitely many eigenvalues below zero. For envelopes decaying as xα|x|^{-\alpha} at infinity, we determine the number of bound states below a given energy E<0E<0, asymptotically as α0\alpha\downarrow 0. To show that bound states located at the bottom of the spectrum are related to the phenomenon of Anderson localization in the corresponding ergodic model, we prove: (a) these states are exponentially localized with a localization length that is uniform in the decay exponent α\alpha; (b)~ dynamical localization holds uniformly in α\alpha

    Spectral and Localization Properties for the One-Dimensional Bernoulli Discrete Dirac Operator

    Full text link
    A 1D Dirac tight-binding model is considered and it is shown that its nonrelativistic limit is the 1D discrete Schr?odinger model. For random Bernoulli potentials taking two values (without correlations), for typical realizations and for all values of the mass, it is shown that its spectrum is pure point, whereas the zero mass case presents dynamical delocalization for specific values of the energy. The massive case presents dynamical localization (excluding some particular values of the energy). Finally, for general potentials the dynamical moments for distinct masses are compared, especially the massless and massive Bernoulli cases.Comment: no figure; 24 pages; to appear in Journal of Mathematical Physic

    Localization for a matrix-valued Anderson model

    Full text link
    We study localization properties for a class of one-dimensional, matrix-valued, continuous, random Schr\"odinger operators, acting on L^2(\R)\otimes \C^N, for arbitrary N1N\geq 1. We prove that, under suitable assumptions on the F\"urstenberg group of these operators, valid on an interval IRI\subset \R, they exhibit localization properties on II, both in the spectral and dynamical sense. After looking at the regularity properties of the Lyapunov exponents and of the integrated density of states, we prove a Wegner estimate and apply a multiscale analysis scheme to prove localization for these operators. We also study an example in this class of operators, for which we can prove the required assumptions on the F\"urstenberg group. This group being the one generated by the transfer matrices, we can use, to prove these assumptions, an algebraic result on generating dense Lie subgroups in semisimple real connected Lie groups, due to Breuillard and Gelander. The algebraic methods used here allow us to handle with singular distributions of the random parameters

    Localization Bounds for Multiparticle Systems

    Full text link
    We consider the spectral and dynamical properties of quantum systems of nn particles on the lattice Zd\Z^d, of arbitrary dimension, with a Hamiltonian which in addition to the kinetic term includes a random potential with iid values at the lattice sites and a finite-range interaction. Two basic parameters of the model are the strength of the disorder and the strength of the interparticle interaction. It is established here that for all nn there are regimes of high disorder, and/or weak enough interactions, for which the system exhibits spectral and dynamical localization. The localization is expressed through bounds on the transition amplitudes, which are uniform in time and decay exponentially in the Hausdorff distance in the configuration space. The results are derived through the analysis of fractional moments of the nn-particle Green function, and related bounds on the eigenfunction correlators

    Generalized eigenvalue-counting estimates for the Anderson model

    Full text link
    We generalize Minami's estimate for the Anderson model and its extensions to nn eigenvalues, allowing for nn arbitrary intervals and arbitrary single-site probability measures with no atoms. As an application, we derive new results about the multiplicity of eigenvalues and Mott's formula for the ac-conductivity when the single site probability distribution is H\"older continuous.Comment: Minor revisio

    Understanding the Random Displacement Model: From Ground-State Properties to Localization

    Full text link
    We give a detailed survey of results obtained in the most recent half decade which led to a deeper understanding of the random displacement model, a model of a random Schr\"odinger operator which describes the quantum mechanics of an electron in a structurally disordered medium. These results started by identifying configurations which characterize minimal energy, then led to Lifshitz tail bounds on the integrated density of states as well as a Wegner estimate near the spectral minimum, which ultimately resulted in a proof of spectral and dynamical localization at low energy for the multi-dimensional random displacement model.Comment: 31 pages, 7 figures, final version, to appear in Proceedings of "Spectral Days 2010", Santiago, Chile, September 20-24, 201

    Exponential dynamical localization for the almost Mathieu operator

    Get PDF
    We prove that the exponential moments of the position operator stay bounded for the supercritical almost Mathieu operator with Diophantine frequency

    The Fractal Dimension of the Spectrum of the Fibonacci Hamiltonian

    Get PDF
    We study the spectrum of the Fibonacci Hamiltonian and prove upper and lower bounds for its fractal dimension in the large coupling regime. These bounds show that as λ\lambda \to \infty, dim(σ(Hλ))logλ\dim (\sigma(H_\lambda)) \cdot \log \lambda converges to an explicit constant (0.88137\approx 0.88137). We also discuss consequences of these results for the rate of propagation of a wavepacket that evolves according to Schr\"odinger dynamics generated by the Fibonacci Hamiltonian.Comment: 23 page

    Widths of the Hall Conductance Plateaus

    Full text link
    We study the charge transport of the noninteracting electron gas in a two-dimensional quantum Hall system with Anderson-type impurities at zero temperature. We prove that there exist localized states of the bulk order in the disordered-broadened Landau bands whose energies are smaller than a certain value determined by the strength of the uniform magnetic field. We also prove that, when the Fermi level lies in the localization regime, the Hall conductance is quantized to the desired integer and shows the plateau of the bulk order for varying the filling factor of the electrons rather than the Fermi level.Comment: 94 pages, v2: a revision of Sec. 5; v3: an error in Sec. 7 is corrected, major revisions of Sec. 7 and Appendix E, Sec. 7 is enlarged to Secs. 7-12, minor corrections; v4: major revisions, accepted for publication in Journal of Statistical Physics; v5: minor corrections, accepted versio
    corecore