2,480 research outputs found

    Risk Assessment and Life Prediction of Complex Engineering Systems

    Full text link
    Many complex engineering systems will exceed their design life expectancy within the next 10 to 15 years. It is also expected that these systems must be maintained and operated beyond their design life. This paper presents a integrated approach for managing the risks associated with aging effects and predicting the residually expectancy these systems, The approach unifies risk assessment, enhanced surveillance and testing, and robust computational models to assess the risk, predict age, and develop a life-extension management procedure. It also relies on the state of the art in life-extension and risk assessment methods from the nuclear power industry. Borrowing from the developments in decision analysis, this approach should systematically identify the options available for managing the existing aging systems beyond their intended design life

    Anaerobic co-digestion of pear residues and sewage sludge using a CSTR digester. Influence of the feed procedure

    Get PDF
    Anaerobic co-digestion of pear residues with sewage sludge is feasible. Important differences are obtained from the two feed regimes tested, with better results for the so-called continuous feed. The organic loading rate (OLR) is the important parameter for the methane productionUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Symmetry forbidden morphologies and domain boundaries in nanoscale graphene islands

    Get PDF
    The synthesis of graphene nanoislands with tailored quantum properties requires an atomic control of the morphology and crystal structure. As one reduces their size down to the nanometer scale, domain boundary and edge energetics, as well as nucleation and growth mechanisms impose different stability and kinetic landscape from that at the microscale. This offers the possibility to synthesize structures that are exclusive to the nanoscale, but also calls for fundamental growth studies in order to control them. By employing high-resolution scanning tunneling microscopy we elucidate the atomic stacking configurations, domain boundaries, and edge structure of graphene nanoislands grown on Ni(1 1 1) by CVD and post-annealed at different temperatures. We find a non-conventional multistep mechanism that separates the thermal regimes for growth, edge reconstruction, and final stacking configuration, leading to nanoisland morphologies that are incompatible with their stacking symmetry. Whole islands shift their stacking configuration during cooling down, and others present continuous transitions at the edges. A statistical analysis of the domain structures obtained at different annealing temperatures reveals how polycrystalline, ill-defined structures heal into shape-selected islands of a single predominant stacking. The high crystallinity and the control on morphology and edge structure makes these graphene nanoislands ideal for their application in optoelectronics and spintronics

    Magnetization dynamics with a spin-transfer torque

    Full text link
    The magnetization reversal and dynamics of a spin valve pillar, whose lateral size is 64Ă—\times64 nm2^2, are studied by using micromagnetic simulation in the presence of spin transfer torque. Spin torques display both characteristics of magnetic damping (or anti-damping) and of an effective magnetic field. For a steady-state current, both M-I and M-H hysteresis loops show unique features, including multiple jumps, unusual plateaus and precessional states. These states originate from the competition between the energy dissipation due to Gilbert damping and the energy accumulation due to the spin torque supplied by the spin current. The magnetic energy oscillates as a function of time even for a steady-state current. For a pulsed current, the minimum width and amplitude of the spin torque for achieving current-driven magnetization reversal are quantitatively determined. The spin torque also shows very interesting thermal activation that is fundamentally different from an ordinary damping effect.Comment: 15 figure

    Integrin activation - the importance of a positive feedback

    Full text link
    Integrins mediate cell adhesion and are essential receptors for the development and functioning of multicellular organisms. Integrin activation is known to require both ligand and talin binding and to correlate with cluster formation but the activation mechanism and precise roles of these processes are not yet resolved. Here mathematical modeling, with known experimental parameters, is used to show that the binding of a stabilizing factor, such as talin, is alone insufficient to enable ligand-dependent integrin activation for all observed conditions; an additional positive feedback is required.Comment: in press in Bulletin of Mathematical Biolog

    High-Flow Oxygen with Capping or Suctioning for Tracheostomy Decannulation

    Get PDF
    9 p.BACKGROUND When patients with a tracheostomy tube reach a stage in their care at which decannulation appears to be possible, it is common practice to cap the tracheostomy tube for 24 hours to see whether they can breathe on their own. Whether this approach to establishing patient readiness for decannulation leads to better outcomes than one based on the frequency of airway suctioning is unclear. METHODS In five intensive care units (ICUs), we enrolled conscious, critically ill adults who had a tracheostomy tube; patients were eligible after weaning from mechanical ventilation. In this unblinded trial, patients were randomly assigned either to undergo a 24-hour capping trial plus intermittent high-flow oxygen therapy (control group) or to receive continuous high-flow oxygen therapy with frequency of suctioning being the indicator of readiness for decannulation (intervention group). The primary outcome was the time to decannulation, compared by means of the log-rank test. Secondary outcomes included decannulation failure, weaning failure, respiratory infections, sepsis, multiorgan failure, durations of stay in the ICU and hospital, and deaths in the ICU and hospital. RESULTS The trial included 330 patients; the mean (±SD) age of the patients was 58.3±15.1 years, and 68.2% of the patients were men. A total of 161 patients were assigned to the control group and 169 to the intervention group. The time to decannulation was shorter in the intervention group than in the control group (median, 6 days [interquartile range, 5 to 7] vs. 13 days [interquartile range, 11 to 14]; absolute difference, 7 days [95% confidence interval, 5 to 9]). The incidence of pneumonia and tracheobronchitis was lower, and the duration of stay in the hospital shorter, in the intervention group than in the control group. Other secondary outcomes were similar in the two groups. CONCLUSIONS Basing the decision to decannulate on suctioning frequency plus continuous highflow oxygen therapy rather than on 24-hour capping trials plus intermittent highflow oxygen therapy reduced the time to decannulation, with no evidence of a between-group difference in the incidence of decannulation failure. (REDECAP ClinicalTrials.gov number, NCT02512744.

    Altered patterns of expression of members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family in lung cancer

    Get PDF
    hnRNP A2/B1 has been suggested as a useful early detection marker for lung carcinoma. hnRNP A2/B1 is a member of a large family of heterogeneous nuclear ribonucleoproteins (hnRNP proteins) involved in a variety of functions, including regulation of transcription, mRNA metabolism, and translation. In lung cancer, we have evaluated the expression and cellular localization of several members of the hnRNP family, hnRNP A1, A2, B1, C1, C2 and K. 16 cell lines (SCLC and NSCLC) and biopsies from 32 lung cancer patients were analyzed. Our results suggest that, besides hnRNP A2/B1, the expression of other members of the hnRNP family is altered both in SCLC and NSCLC. In the biopsies, negative or low expression of the hnRNP proteins analyzed was observed in normal epithelial cells whereas lung cancer cells showed highly intense nuclear or cytoplasmic immunolocalization. In all the lung cancer cell lines, the mRNA for all the hnRNP proteins was detected. In general, higher levels of hnRNP mRNAs were found in SCLC as compared with NSCLC. Our results also suggest that the expression and processing of each hnRNP protein in lung cancer is independently regulated and is not exclusively related to proliferation status. In SCLC cell lines, hnRNP A1 protein expression correlated with that of Bcl-x(L). In the lung cancer cell lines, hnRNP K protein localization varied with the cellular confluence

    Amplification of IGH/MYC fusion in clinically aggressive IGH/BCL2-positive germinal center B-cell lymphomas

    Get PDF
    Activation of an oncogene via its juxtaposition to the IGH locus by a chromosomal translocation or, less frequently, by genomic amplification is considered a major mechanism of B-cell lymphomagenesis. However, amplification of an IGH/oncogene fusion, coined a complicon, is a rare event in human cancers and has been associated with poor outcome and resistance to treatment. In this article are descriptions of two cases of germinal-center-derived B-cell lymphomas with IGH/BCL2 fusion that additionally displayed amplification of an IGH/MYC fusion. As shown by fluorescence in situ hybridization, the first case contained a IGH/MYC complicon in double minutes, whereas the second case showed a BCL2/IGH/MYC complicon on a der(8)t(8;14)t(14;18). Additional molecular cytogenetic and mutation analyses revealed that the first case also contained a chromosomal translocation affecting the BCL6 oncogene and a biallelic inactivation of TP53. The second case harbored a duplication of REL and acquired a translocation affecting IGL and a biallelic inactivation of TP53 during progression. Complicons affecting Igh/Myc have been reported previously in lymphomas of mouse models simultaneously deficient in Tp53 and in genes of the nonhomologous end-joining DNA repair pathway. To the best of our knowledge, this is the first time that IGH/MYC complicons have been reported in human lymphomas. Our findings imply that the two mechanisms resulting in MYC deregulation, that is, translocation and amplification, can occur simultaneously

    Universal Behavior of Charged Particle Production in Heavy Ion Collisions

    Full text link
    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.Comment: 4 Pages, 5 Figures, contributed to the Proceedings of Quark Matter 2002, Nantes, France, 18-24 July 200
    • …
    corecore