1,380 research outputs found

    The immunohistochemical expression of leptin in lymph node metastasis from laryngeal squamous cell carcinoma (SCC)

    Get PDF
    Introduction: Leptin is a proteohormone produced predominantly by white adipocytes and primarily known for its key role in the control of food intake and sense of satiety. From its discover leptin has been found in different body districts, involved in always new functions and processes. In the last years numerous relationships between leptin and cancer has been found. The aim of this study is to test the leptin positivity in human primitive laryngeal squamous cell carcinoma (SCC) and in its lymph node metastasis. Materials and methods: Leptin positivity was detected by immunohistochemical analysis on pathological samples from 18 patients subjected to laryngectomy and neck dissection for SCC. Results: During the study we pointed out a statistically significant relationship (p < 0.05) between leptin positivity levels and tumor differentiation grade, in particular we observed that a decrease in tumor leptin production correlates with higher level of cancer histological dedifferentiation. Conclusion: Our research on leptin expression in laryngeal squamous neoplastic pathology is aimed to the attempt of establishing a more precise patient risk stratification thanks to a new marker able to give a contribution to the identification of patient with poor prognosis and at risk of failure of actual standard therapy

    An error estimate of Gaussian Recursive Filter in 3Dvar problem

    Full text link
    Computational kernel of the three-dimensional variational data assimilation (3D-Var) problem is a linear system, generally solved by means of an iterative method. The most costly part of each iterative step is a matrix-vector product with a very large covariance matrix having Gaussian correlation structure. This operation may be interpreted as a Gaussian convolution, that is a very expensive numerical kernel. Recursive Filters (RFs) are a well known way to approximate the Gaussian convolution and are intensively applied in the meteorology, in the oceanography and in forecast models. In this paper, we deal with an oceanographic 3D-Var data assimilation scheme, named OceanVar, where the linear system is solved by using the Conjugate Gradient (GC) method by replacing, at each step, the Gaussian convolution with RFs. Here we give theoretical issues on the discrete convolution approximation with a first order (1st-RF) and a third order (3rd-RF) recursive filters. Numerical experiments confirm given error bounds and show the benefits, in terms of accuracy and performance, of the 3-rd RF.Comment: 9 page

    A Lignin-Rich Extract of Giant Reed (Arundo donax L.) as a Possible Tool to Manage Soilborne Pathogens in Horticulture: A Preliminary Study on a Model Pathosystem

    Get PDF
    Finding new sustainable tools for crop protection in horticulture has become mandatory. Giant reed (Arundo donax L.) is a tall, perennial, widely diffuse lignocellulosic grass, mainly proposed for bioenergy production due to the fact of its high biomass yield and low agronomic requirements. Some studies have already highlighted antimicrobial and antifungal properties of giant reed-derived compounds. This study aimed at investigating the potential of a lignin-rich giant reed extract for crop protection. The extract, obtained by dry biomass treatment with potassium hydroxide at 120◦C, followed by neutralization, was chemically characterized. A preliminary in vitro screening among several pathogenic strains of fungi and oomycetes showed a high sensitivity by most of the soilborne pathogens to the extract; thus, an experiment was performed with the model pathosystem, Pythium ultimum–zucchini in a growth substrate composed of peat or sand. The adsorption by peat and sand of most of the lignin-derived compounds contained in the extract was also observed. The extract proved to be effective in restoring the number of healthy zucchini plantlets in the substrate infected with P. ultimum compared to the untreated control. This study highlights the potential of the lignin-rich giant reed extract to sustain crop health in horticulture

    The Perspective of Using the System Ethanol-Ethyl Acetate in a Liquid Organic Hydrogen Carrier (LOHC) Cycle

    Get PDF
    Starting from bioethanol it is possible, by using an appropriate catalyst, to produce ethyl acetate in a single reaction step and pure hydrogen as a by-product. Two molecules of hydrogen can be obtained for each molecule of ethyl acetate produced. The mentioned reaction is reversible, therefore, it is possible to hydrogenate ethyl acetate to reobtain ethanol, so closing the chemical cycle of a Liquid Organic Hydrogen Carrier (LOHC) process. In other words, bioethanol can be conveniently used as a hydrogen carrier. Many papers have been published in the literature dealing with both the ethanol dehydrogenation and the ethyl acetate hydrogenation to ethanol so demonstrating the feasibility of this process. In this review all the aspects of the entire LOHC cycle are considered and discussed. We examined in particular: the most convenient catalysts for the two main reactions, the best operative conditions, the kinetics of all the reactions involved in the process, the scaling up of both ethanol dehydrogenation and ethyl acetate hydrogenation from the laboratory to industrial plant, the techno-economic aspects of the process and the perspective for improvements. In particular, the use of bioethanol in a LOHC process has three main advantages: (1) the hydrogen carrier is a renewable resource; (2) ethanol and ethyl acetate are both green products benign for both the environment and human safety; (3) the processes of hydrogenation and dehydrogenation occur in relatively mild operative conditions of temperature and pressure and with high energetic efficiency. The main disadvantage with respect to other more conventional LOHC systems is the relatively low hydrogen storage density

    Impact of Seed Inoculation with Trichoderma afroharzianum Strains on Plant Growth, Root Morphology, and Leaf Phenolic Content in Hemp (Cannabis sativa L.) at Early Growth Stages

    Get PDF
    Industrial hemp (Cannabis sativa L.) is receiving increasing attention for its multiple end-uses; therefore, an improvement in its production is needed to meet the increased demand. In the present study, the effect of seed inoculation with two Trichoderma afroharzianum strains, T-AA and T-22, on plant growth and root morphology of hemp plants at sixth-leaf (S6) and tenth-leaf (S10) stages was assessed for two consecutive years (2020 and 2021). In addition, the ability of the two strains to enhance the accumulation of phenolic compounds in hemp leaves was also evaluated. The results obtained revealed the ability of T-22 to improve the growth and root morphology of hemp plants both in 2020 and 2021, although with different impact, probably ascribable to the different weather conditions in the two years. In 2020, the positive effects of T-22 were detected at S10 stage with significant increases in the shoot and root length (38% and 17%, respectively) and dried biomass (35% and 30%, respectively) compared to untreated plants. The total root surface area and the number of tips, forks, and crossings also increased significantly (24–36%) at this stage. In 2021, significant increases in the shoot length and dried biomass (40% and 30%, respectively) were observed at S6 stage, whereas root length and dried biomass increased significantly at S6 (55% and 47%, respectively) and S10 stage (121% and 40%, respectively). Significant increases in the total surface area and volume, as well as in the number of tips, forks, and crossings were also observed at both S6 and S10 stage (50–63% and 105–187%, respectively). Interestingly, in both years and at both stages, the two strains induced significant increases in the leaf accumulation of phenolic compounds and the antioxidant activity, which were greater in T-22- compared to T-AA-treated plants (18–102% and 13–34%, respectively). The results are discussed in light of the potential practical applications of T-22 as a biostimulant of hemp plant growth under favorable and unfavorable environmental conditions, and of both strains as promising tools for the improvement of the leaves’ economic value as a source of health-promoting compounds

    Influence of Topological Edge States on the Properties of Al/Bi2Se3/Al Hybrid Josephson Devices

    Get PDF
    In superconductor-topological insulator-superconductor hybrid junctions, the barrier edge states are expected to be protected against backscattering, to generate unconventional proximity effects, and, possibly, to signal the presence of Majorana fermions. The standards of proximity modes for these types of structures have to be settled for a neat identification of possible new entities. Through a systematic and complete set of measurements of the Josephson properties we find evidence of ballistic transport in coplanar Al-Bi2Se3-Al junctions that we attribute to a coherent transport through the topological edge state. The shunting effect of the bulk only influences the normal transport. This behavior, which can be considered to some extent universal, is fairly independent of the specific features of superconducting electrodes. A comparative study of Shubnikov - de Haas oscillations and Scanning Tunneling Spectroscopy gave an experimental signature compatible with a two dimensional electron transport channel with a Dirac dispersion relation. A reduction of the size of the Bi2Se3 flakes to the nanoscale is an unavoidable step to drive Josephson junctions in the proper regime to detect possible distinctive features of Majorana fermions.Comment: 11 pages, 14 figure

    Effect of stratification on the mixing and reaction yield in a T-shaped micro-mixer

    Get PDF
    The effect of a small density difference, i.e., lower than 12%, between the two miscible liquid streams fed to a T-shaped junction is investigated experimentally and through numerical simulations. Micron-resolution particle image velocimetry (micro-PIV) experiments provided detailed support to the numerical analysis of how stratification influences flow features in different flow regimes. From dimensional analysis, we find that gravitational and inertial fluxes balance each other at a distance L=d/Ri from the confluence along the mixing channel, where d is the hydraulic diameter and Ri is the Richardson number. In general, at distances |y|≪L, the influence of gravity can be neglected, while at |y|≫L the two fluids are fully segregated; in particular, at the confluence, the flow field is the same as the one that we obtain assuming that the two inlet fluids are identical. Thus, in the segregated regime, the contact region separating the two fluids of the inlet streams remains vertical at distances |y|≪L along the mixing channel while it becomes progressively horizontal at |y|≈L. In the vortex regime as well, near the confluence the flow field presents a mirror symmetry, with a very small resulting degree of mixing; however, as we move down the mixing channel, when |y|>L, gravity becomes relevant, leading to a symmetry breaking that promotes convection and enhances mixing. When we further increase the Reynolds number, in the engulfment regime, the degree of mixing becomes much larger due to the mixing induced by the flow instability at the confluence and thus the successive stratification appears to have a small effect on the flow topology, with a degree of mixing that continues to grow very slowly in the mixing channel, similar to what happens in the case of identical inlet fluids. As expected, the onsets of the vortex and engulfment regimes occur at values of the Reynolds number Re that hardly depend on the density difference between the two inlet fluids, provided that Re is defined in terms of the fluid properties of a homogeneous fluid mixture. Finally, the reaction yield along the mixing channel is computed both from numerical and experimental data. In agreement with theoretical predictions, we found that the reaction yield depends on the Damköhler number and the kinetic constant, while it is independent of the density ratio, at least within the range of the investigated conditions

    Economics of One Health: Costs and benefits of integrated West Nile virus surveillance in Emilia-Romagna

    Get PDF
    Since 2013 in Emilia-Romagna, Italy, surveillance information generated in the public health and in the animal health sectors has been shared and used to guide public health interventions to mitigate the risk of West Nile virus (WNV) transmission via blood transfusion. The objective of the current study was to identify and estimate the costs and benefits associated with this One Health surveillance approach, and to compare it to an approach that does not integrate animal health information in blood donations safety policy (uni-sectoral scenario). Costs of human, animal, and entomological surveillance, sharing of information, and triggered interventions were estimated. Benefits were quantified as the averted costs of potential human cases of WNV neuroinvasive disease associated to infected blood transfusion. In the 2009–2015 period, the One Health approach was estimated to represent a cost saving of €160,921 compared to the uni-sectoral scenario. Blood donation screening was the main cost for both scenarios. The One Health approach further allowed savings of €1.21 million in terms of avoided tests on blood units. Benefits of the One Health approach due to short-term costs of hospitalization and compensation for transfusion-associated disease potentially avoided, were estimated to range from €0 to €2.98 million according to the probability of developing WNV neuroinvasive disease after receiving an infected blood transfusion

    Covert Shift of Attention Modulates the Ongoing Neural Activity in a Reaching Area of the Macaque Dorsomedial Visual Stream

    Get PDF
    Background: Attention is used to enhance neural processing of selected parts of a visual scene. It increases neural responses to stimuli near target locations and is usually coupled to eye movements. Covert attention shifts, however, decouple the attentional focus from gaze, allowing to direct the attention to a peripheral location without moving the eyes. We tested whether covert attention shifts modulate ongoing neuronal activity in cortical area V6A, an area that provides a bridge between visual signals and arm-motor control. Methodology/Principal Findings: We performed single cell recordings from 3 Macaca Fascicularis trained to fixate straight-head, while shifting attention outward to a peripheral cue and inward again to the fixation point. We found that neurons in V6A are influenced by spatial attention. The attentional modulation occurs without gaze shifts and cannot be explained by visual stimulations. Visual, motor, and attentional responses can occur in combination in single neurons. Conclusions/Significance: This modulation in an area primarily involved in visuo-motor transformation for reaching may form a neural basis for coupling attention to the preparation of reaching movements. Our results show that cortical processes of attention are related not only to eye-movements, as many studies have shown, but also to arm movements, a finding that has been suggested by some previous behavioral findings. Therefore, the widely-held view that spatial attention is tightly intertwined with - and perhaps directly derived from - motor preparatory processes should be extended to a broader spectrum of motor processes than just eye movements

    Numerical investigation of the mixing of highly viscous liquids with Cowles impellers

    Get PDF
    This work is aimed at investigating the mixing process of highly viscous paints, used to colour leathers in the tanning industry, through Computational Fluid Dynamics (CFD). In particular, a mixing tank is fed with a master liquid and different liquid pigments and then stirred by Cowles impellers in order to obtain a paint of a uniform colour. The typical dynamic viscosity of the liquids in this process is μ ~ O(0.1-10) Pa·s, while the Cowles rotational speed is usually very high, i.e. 3000-5000 rpm. The numerical model is based on the solution of the unsteady Reynolds-Averaged Navier–Stokes (RANS) equations for continuity, momentum and species mass fractions, the latter being used to describe the different components. The impeller motion is modelled through the Sliding Deforming Mesh (SDM) approach, using rotating (unstructured) meshes in the impeller region and a static (structured) mesh in the remainder of the tank. The master liquid and coloured pigments are assumed to stratify within the tank at initial time and the steady rotational speed is then imposed abruptly to the impellers. The level of homogeneity in the stirred tank is evaluated through the analysis of component concentration fields over time. In particular, such local concentrations can be used to determine the mixture colour in different regions of the tank, and hence predict the degree of homogeneity at different times; this is accomplished by defining a proper homogeneity indicator based on the spatial variance of the estimated colour. The proposed numerical model provides an efficient method to investigate the colour of the mixture and to evaluate an appropriate mixing time. The methodology gives also important indications for the tank design, especially useful in the case of non-conventional impellers, high rotation rates and viscous fluids
    • …
    corecore