2,032 research outputs found

    Erythromycin for prokinesis: imprudent prescribing?

    Get PDF
    Problems with antibiotic resistant bacteria are increasing in the hospital and particularly in the intensive care unit. Methicillin-resistant Staphylococcus aureus, Acinetobacter baumanii and extended spectrum beta-lactamase producing Gram-negative bacilli constitute a therapeutic and infection control challenge. Early enteral feeding improves survival in patients in the intensive care unit. Prokinetic agents are routinely used in patients with inappropriate gastrointestinal motility. The use of erythromycin at sub-therapeutic doses as a prokinetic agent is a cause of concern for the following reasons: it can increase the emergence and spread of antibiotic resistance and the likelihood of Clostridium difficile disease. The use of an antibiotic as a prokinetic agent does not constitute prudent antimicrobial prescribing and should be avoided. Alternative agents, whenever possible, should be used

    Measures of Model Performance Based On the Log Accuracy Ratio

    Get PDF
    Quantitative assessment of modeling and forecasting of continuous quantities uses a variety of approaches. We review existing literature describing metrics for forecast accuracy and bias, concentrating on those based on relative errors and percentage errors. Of these accuracy metrics, the mean absolute percentage error (MAPE) is one of the most common across many fields and has been widely applied in recent space science literature and we highlight the benefits and drawbacks of MAPE and proposed alternatives. We then introduce the log accuracy ratio and derive from it two metrics: the median symmetric accuracy and the symmetric signed percentage bias. Robust methods for estimating the spread of a multiplicative linear model using the log accuracy ratio are also presented. The developed metrics are shown to be easy to interpret, robust, and to mitigate the key drawbacks of their more widely used counterparts based on relative errors and percentage errors. Their use is illustrated with radiation belt electron flux modeling examples.Peer reviewe

    Testing linear hypotheses in high-dimensional regressions

    Full text link
    For a multivariate linear model, Wilk's likelihood ratio test (LRT) constitutes one of the cornerstone tools. However, the computation of its quantiles under the null or the alternative requires complex analytic approximations and more importantly, these distributional approximations are feasible only for moderate dimension of the dependent variable, say p20p\le 20. On the other hand, assuming that the data dimension pp as well as the number qq of regression variables are fixed while the sample size nn grows, several asymptotic approximations are proposed in the literature for Wilk's \bLa including the widely used chi-square approximation. In this paper, we consider necessary modifications to Wilk's test in a high-dimensional context, specifically assuming a high data dimension pp and a large sample size nn. Based on recent random matrix theory, the correction we propose to Wilk's test is asymptotically Gaussian under the null and simulations demonstrate that the corrected LRT has very satisfactory size and power, surely in the large pp and large nn context, but also for moderately large data dimensions like p=30p=30 or p=50p=50. As a byproduct, we give a reason explaining why the standard chi-square approximation fails for high-dimensional data. We also introduce a new procedure for the classical multiple sample significance test in MANOVA which is valid for high-dimensional data.Comment: Accepted 02/2012 for publication in "Statistics". 20 pages, 2 pages and 2 table

    Pressure of thermal excitations in superfluid helium

    Full text link
    We find the pressure, due to the thermal excitations of superfluid helium, at the interface with a solid. The separate contributions of phonons, RR^- rotons and R+R^+ rotons are derived. The pressure due to RR^- rotons is shown to be negative and partially compensates the positive contribution of R+R^+ rotons, so the total roton pressure is positive but several times less than the separate RR^- and R+R^+ roton contributions. The pressure of the quasiparticle gas is shown to account for the fountain effect in HeIIHeI I. An experiment is proposed to observe the negative pressure due to RR^- rotons.Comment: 14 pages, 4 figure

    Correlation effects in Ni 3d states of LaNiPO

    Full text link
    The electronic structure of the new superconducting material LaNiPO experimentally probed by soft X-ray spectroscopy and theoretically calculated by the combination of local density approximation with Dynamical Mean-Field Theory (LDA+DMFT) are compared herein. We have measured the Ni L2,3 X-ray emission (XES) and absorption (XAS) spectra which probe the occupied and unoccupied the Ni 3d states, respectively. In LaNiPO, the Ni 3d states are strongly renormalized by dynamical correlations and shifted about 1.5 eV lower in the valence band than the corresponding Fe 3d states in LaFeAsO. We further obtain a lower Hubbard band at -9 eV below the Fermi level in LaNiPO which bears striking resemblance to the lower Hubbard band in the correlated oxide NiO, while no such band is observed in LaFeAsO. These results are also supported by the intensity ratio between the transition metal L2 and L3 bands measured experimentally to be higher in LaNiPO than in LaFeAsO, indicating the presence of the stronger electron correlations in the Ni 3d states in LaNiPO in comparison with the Fe 3d states in LaFeAsO. These findings are in accordance with resonantly excited transition metal L3 X-ray emission spectra which probe occupied metal 3d-states and show the appearance of the lower Hubbard band in LaNiPO and NiO and its absence in LaFeAsO.Comment: 6 pages, 5 figure

    Helium mixtures in nanotube bundles

    Full text link
    An analogue to Raoult's law is determined for the case of a 3He-4He mixture adsorbed in the interstitial channels of a bundle of carbon nanotubes. Unlike the case of He mixtures in other environments, the ratio of the partial pressures of the coexisting vapor is found to be a simple function of the ratio of concentrations within the nanotube bundle.Comment: 3 pages, no figures, submitted to Phys. Rev. Let

    Na incorporation into Cu(In,Ga)Se2 thin-film solar cell absorbers deposited on polyimide: Impact on the chemical and electronic surface structure

    Full text link
    The following article appeared in Journal of Applied Physics 111.3 (2012): 034903 and may be found at http://scitation.aip.org/content/aip/journal/jap/111/3/10.1063/1.3679604Na has deliberately been incorporated into Cu(In,Ga)Se2 (CIGSe) chalcopyrite thin-film solar cell absorbers deposited on Mo-coated polyimide flexible substrates by adding differently thick layers of NaF in-between CIGSe absorber and Mo back contact. The impact of Na on the chemical and electronic surface structure of CIGSe absorbers with various Cu-contents deposited at comparatively low temperature (420 C) has been studied using x-ray photoelectron and x-ray excited Auger electron spectroscopy. We observe a higher Na surface content for the Cu-richer CIGSe samples and can distinguish between two different chemical Na environments, best described as selenide-like and oxidized Na species, respectively. Furthermore, we find a Cu-poor surface composition of the CIGSe samples independent of Na content and - for very high Na contents - indications for the formation of a (Cu,Na)-(In,Ga)-Se like compound. With increasing Na surface content, also a shift of the photoemission lines to lower binding energies could be identified, which we interpret as a reduction of the downward band bending toward the CIGSe surface explained by the Na-induced elimination of In Cu defects.X.S., R.F., D.G., R.G.W., and M.B. are grateful to the Helmholtz-Association for financial support (VH-NG-423). R.F. also acknowledges the support by the German Academic Exchange Agency (DAAD; 331 4 04 002)

    Scattering of second sound waves by quantum vorticity

    Full text link
    A new method of detection and measurement of quantum vorticity by scattering second sound off quantized vortices in superfluid Helium is suggested. Theoretical calculations of the relative amplitude of the scattered second sound waves from a single quantum vortex, a vortex ring, and bulk vorticity are presented. The relevant estimates show that an experimental verification of the method is feasible. Moreover, it can even be used for the detection of a single quantum vortex.Comment: Latex file, 9 page
    corecore