1,050 research outputs found

    C^+ distribution around S1 in rho Ophiuchi

    Full text link
    We analyze a [C II] 158 micron map obtained with the L2 GREAT receiver on SOFIA of the emission/reflection nebula illuminated by the early B star S1 in the rho-OphA cloud core. This data set has been complemented with maps of CO(3-2), 13CO(3-2) and C18O(3-2), observed as a part of the JCMT Gould Belt Survey, with archival HCO^+(4-3) JCMT data, as well as with [O I] 63 and 145 micron imaging with Herschel/PACS. The [C II] emission is completely dominated by the strong PDR emission from the nebula surrounding S1 expanding into the dense Oph A molecular cloud west and south of S1. The [C II] emission is significantly blue shifted relative to the CO spectra and also relative to the systemic velocity, particularly in the northwestern part of the nebula. The [C II] lines are broader towards the center of the S1 nebula and narrower towards the PDR shell. The [C II] lines are strongly self-absorbed over an extended region in the S1 PDR. Based on the strength of the [13C II] F = 2-1 hyperfine component, [C II] is significantly optically thick over most of the nebula. CO and 13CO(3-2) spectra are strongly self-absorbed, while C18O(3-2) is single peaked and centered in the middle of the self-absorption. We have used a simple two-layer LTE model to characterize the background and foreground cloud contributing to the [C II] emission. From this analysis we estimate the extinction due to the foreground cloud to be ~9.9 mag, which is slightly less than the reddening estimated towards S1. Since some of the hot gas in the PDR is not traced by low J CO emission, this result appears quite plausible. Using a plane parallel PDR model with the observed [OI(145)]/[C II] brightness ratio and an estimated FUV intensity of 3100-5000 G0 suggests that the density of the [C II] emitting gas is ~3-4x10^3 cm^-3.Comment: Accepted for publication in Astronomy & Astrophysic

    Opening the Treasure Chest in Carina

    Full text link
    We have mapped the G287.84-0.82 cometary globule (with the Treasure Chest cluster embedded in it) in the South Pillars region of Carina (i) in [CII], 63micron [OI], and CO(11-10) using upGREAT on SOFIA and (ii) in J=2-1 transitions of CO, 13CO, C18O and J=3-2 transitions of H2CO using the APEX telescope in Chile. We probe the morphology, kinematics, and physical conditions of the molecular gas and the photon dominated regions (PDRs) in G287.84-0.82. The [CII] and [OI] emission suggest that the overall structure of the pillar (with red-shifted photo evaporating tails) is consistent with the effect of FUV radiation and winds from eta-Car and O stars in Trumpler 16. The gas in the head of the pillar is strongly influenced by the embedded cluster, whose brightest member is an O9.5V star, CPD-59 2661. The emission of the [CII] and [OI] lines peak at a position close to the embedded star, while all other tracers peak at another position lying to the north-east consistent with gas being compressed by the expanding PDR created by the embedded cluster. The molecular gas inside the globule is probed with the J=2-1 transitions of CO and isotopologues as well as H2CO, and analyzed using a non-LTE model (escape-probability approach), while we use PDR models to derive the physical conditions of the PDR. We identify at least two PDR gas components; the diffuse part (~10^4 cm^-3) is traced by [CII], while the dense (n~ 2-8x10^5 cm^-3) part is traced by [CII], [OI], CO(11-10). Using the F=2-1 transition of [13CII] detected at 50 positions in the region, we derive optical depths (0.9-5), excitation temperatures of [CII] (80-255 K), and N(C+) of 0.3-1x10^19 cm^-2. The total mass of the globule is ~1000 Msun, about half of which is traced by [CII]. The dense PDR gas has a thermal pressure of 10^7-10^8 K cm^-3, which is similar to the values observed in other regions.Comment: Accepted for publication in Astronomy and Astrophysics (abstract slightly abridged

    The structure of protostellar envelopes derived from submillimeter continuum images

    Get PDF
    High dynamic range imaging of submillimeter dust emission from the envelopes of eight young protostars in the Taurus and Perseus star-forming regions has been carried out using the SCUBA submillimeter camera on the James Clerk Maxwell Telescope. Good correspondence between the spectral classifications of the protostars and the spatial distributions of their dust emission is observed, in the sense that those with cooler spectral energy distributions also have a larger fraction of the submillimeter flux originating in an extended envelope compared with a disk. This results from the cool sources having more massive envelopes rather than warm sources having larger disks. Azimuthally-averaged radial profiles of the dust emission are used to derive the power-law index of the envelope density distributions, p (defined by rho proportional to r^-p), and most of the sources are found to have values of p consistent with those predicted by models of cloud collapse. However, the youngest protostars in our sample, L1527 and HH211-mm, deviate significantly from the theoretical predictions, exhibiting values of p somewhat lower than can be accounted for by existing models. For L1527 heating of the envelope by shocks where the outflow impinges on the surrounding medium may explain our result. For HH211-mm another explanation is needed, and one possibility is that a shallow density profile is being maintained in the outer envelope by magnetic fields and/or turbulence. If this is the case star formation must be determined by the rate at which the support is lost from the cloud, rather than the hydrodynamical properties of the envelope, such as the sound speed.Comment: Accepted for publication in the Astrophysical Journa

    High Spectral and Spatial Resolution Observations of the PDR Emission in the NGC2023 Reflection Nebula with SOFIA and APEX

    Full text link
    We have mapped the NGC 2023 reflection nebula in [CII] and CO(11--10) with the heterodyne receiver GREAT on SOFIA and obtained slightly smaller maps in 13CO(3--2), CO(3--2), CO(4--3), CO(6--5), and CO(7--6) with APEX in Chile. We use these data to probe the morphology, kinematics, and physical conditions of the C II region, which is ionized by FUV radiation from the B2 star HD37903. The [CII] emission traces an ellipsoidal shell-like region at a position angle of ~ -50 deg, and is surrounded by a hot molecular shell. In the southeast, where the C II region expands into a dense, clumpy molecular cloud ridge, we see narrow and strong line emission from high-J CO lines, which comes from a thin, hot molecular shell surrounding the [CII] emission. The [CII] lines are broader and show photo evaporating gas flowing into the C II region. Based on the strength of the [13CII] F=2--1 line, the [CII] line appears to be somewhat optically thick over most of the nebula with an optical depth of a few. We model the physical conditions of the surrounding molecular cloud and the PDR emission using both RADEX and simple PDR models. The temperature of the CO emitting PDR shell is ~ 90 -- 120 K, with densities of 10^5 -- 10^6 cm^-3, as deduced from RADEX modeling. Our PDR modeling indicates that the PDR layer where [CII] emission dominates has somewhat lower densities, 10^4 to a few times 10^5 cm^-3Comment: Accepted by A&

    A Submillimeter Study of the Star-Forming Region NGC7129

    Get PDF
    New molecular (13CO J=3-2) and dust continuum (450 and 850 micron) SCUBA maps of the NGC7129 star forming region are presented, complemented by C18O J=3-2 spectra at several positions within the mapped region. The maps include the Herbig Ae/Be star LkHalpha 234, the far-infrared source NGC 7129 FIRS2 and several other pre-stellar sources embedded within the molecular ridge. The SCUBA maps help us understand the nature of the pre-main sequence stars in this actively star forming region. A deeply embedded submillimeter source, SMM2, not clearly seen in any earlier data set, is shown to be a pre-stellar core or possibly a protostar. The highest continuum peak emission is identified with the deeply embedded source IRS6, a few arcseconds away from LkHalpha 234, and also responsible for both the optical jet and the molecular outflow. The gas and dust masses are found to be consistent, suggesting little or no CO depletion onto grains. The dust emissivity index is lower towards the dense compact sources, beta ~1 - 1.6, and higher, beta ~ 2.0, in the surrounding cloud, implying small size grains in the PDR ridge, whose mantles have been evaporated by the intense UV radiation.Comment: Accepted by Ap

    Cold Dust in Kepler's Supernova Remnant

    Full text link
    The timescales to replenish dust from the cool, dense winds of Asymptotic Giant Branch stars are believed to be greater than the timescales for dust destruction. In high redshift galaxies, this problem is further compounded as the stars take longer than the age of the Universe to evolve into the dust production stages. To explain these discrepancies, dust formation in supernovae (SNe) is required to be an important process but until very recently dust in supernova remnants has only been detected in very small quantities. We present the first submillimeter observations of cold dust in Kepler's supernova remnant (SNR) using SCUBA. A two component dust temperature model is required to fit the Spectral Energy Distribution (SED) with Twarm102T_{warm} \sim 102K and Tcold17T_{cold} \sim 17K. The total mass of dust implied for Kepler is 1M\sim 1M_{\odot} - 1000 times greater than previous estimates. Thus SNe, or their progenitors may be important dust formation sites.Comment: 12 pages, 2 figures, accepted to ApJL, corrected proof

    Star Formation in the Northern Cloud Complex of NGC 2264

    Full text link
    We have made continuum and spectral line observations of several outflow sources in the Mon OB1 dark cloud (NGC 2264) using the Heinrich Hertz Telescope (HHT) and ARO 12m millimeter-wave telescope. This study explores the kinematics and outflow energetics of the young stellar systems observed and assesses the impact star formation is having on the surrounding cloud environment. Our data set incorporates 12CO(3-2), 13CO(3-2), and 12CO(1-0) observations of outflows associated with the sources IRAS 06382+1017 and IRAS 06381+1039, known as IRAS 25 and 27, respectively, in the northern cloud complex. Complementary 870 micron continuum maps were made with the HHT 19 channel bolometer array. Our results indicate that there is a weak (approximately less than 0.5%) coupling between outflow kinetic energy and turbulent energy of the cloud. An analysis of the energy balance in the IRAS 25 and 27 cores suggests they are maintaining their dynamical integrity except where outflowing material directly interacts with the core, such as along the outflow axes.Comment: 28 pages including 6 figures, to be published in ApJ 01 July 2006, v645, 1 issu

    GREAT [CII] and CO observations of the BD+40{\deg}4124 region

    Full text link
    The BD+40\degree4124 region was observed with high angular and spectral resolution with the German heterodyne instrument GREAT in CO J = 13 \rightarrow 12 and [CII] on SOFIA. These observations show that the [CII] emission is very strong in the reflection nebula surrounding the young Herbig Ae/Be star BD+40\degree4124. A strip map over the nebula shows that the [CII] emission approximately coincides with the optical nebulosity. The strongest [CII] emission is centered on the B2 star and a deep spectrum shows that it has faint wings, which suggests that the ionized gas is expanding. We also see faint CO J = 13 \rightarrow 12 at the position of BD+40\degree4124, which suggests that the star may still be surrounded by an accretion disk.We also detected [CII] emission and strong CO J = 13 \rightarrow 12 toward V1318 Cyg. Here the [CII] emission is fainter than in BD+40\degree4124 and appears to come from the outflow, since it shows red and blue wings with very little emission at the systemic velocity, where the CO emission is quite strong. It therefore appears that in the broad ISO beam the [CII] emission was dominated by the reflection nebula surrounding BD+40\degree4124, while the high J CO lines originated from the adjacent younger and more deeply embedded binary system V1318 Cyg

    Subarcsecond Submillimeter Imaging of the Ultracompact HII Region G5.89-0.39

    Full text link
    We present the first subarcsecond submillimeter images of the enigmatic ultracompact HII region (UCHII) G5.89-0.39. Observed with the SMA, the 875 micron continuum emission exhibits a shell-like morphology similar to longer wavelengths. By using images with comparable angular resolution at five frequencies obtained from the VLA archive and CARMA, we have removed the free-free component from the 875 micron image. We find five sources of dust emission: two compact warm objects (SMA1 and SMA2) along the periphery of the shell, and three additional regions further out. There is no dust emission inside the shell, supporting the picture of a dust-free cavity surrounded by high density gas. At subarcsecond resolution, most of the molecular gas tracers encircle the UCHII region and appear to constrain its expansion. We also find G5.89-0.39 to be almost completely lacking in organic molecular line emission. The dust cores SMA1 and SMA2 exhibit compact spatial peaks in optically-thin gas tracers (e.g. 34SO2), while SMA1 also coincides with 11.9 micron emission. In CO(3-2), we find a high-velocity north/south bipolar outflow centered on SMA1, aligned with infrared H2 knots, and responsible for much of the maser activity. We conclude that SMA1 is an embedded intermediate mass protostar with an estimated luminosity of 3000 Lsun and a circumstellar mass of ~1 Msun. Finally, we have discovered an NH3 (3,3) maser 12 arcsec northwest of the UCHII region, coincident with a 44 GHz CH3OH maser, and possibly associated with the Br gamma outflow source identified by Puga et al. (2006).Comment: 41 pages, 11 figures, published in The Astrophysical Journal (2008) Volume 680, Issue 2, pp. 1271-1288. An error in the registration of the marker positions in Figure 11 has been corrected in this versio
    corecore