3,512 research outputs found

    The dependence of HII region properties on global and local surface brightness within galaxy discs

    Full text link
    Using B, R, and H-alpha images of roughly equal-sized samples of low surface brightness (LSB) and high surface brightness (HSB) galaxies (~40 galaxies apiece), we have explored the dependence of HII region properties on local and global disc surface brightness. We have done this by constructing co-added HII region luminosity functions (LFs) according to local and central disc surface brightness and fitting Schechter functions to these LFs. The results show that the shape of the HII region LF within LSB galaxies does not change noticeably as different limiting (i.e., mu>mu_lim) local surface brightness values are used. However, the LFs for HSB galaxies have larger values of L_* and are less steep at the faint-end than those of LSB galaxies for limiting B-band local surface brightness values as faint as mu_B,lim~23-24. Both the LFs and the data for individual HII regions show that luminous (log L>39 ergs/s) HII regions are much more common within HSB discs than within LSB discs, implying that the newly formed star clusters are also larger. Taking this into account along with the results of Monte Carlo simulations, the shapes of the LFs imply that the regions within LSB discs and those within the LSB areas of HSB discs are relatively old (~5 Myr) while the regions within HSB discs for mu_B<24 are significantly younger (<1 Myr). Since the majority of the LSB galaxies do not have noticeable spiral arms and the majority of the HSB galaxies do, this may indicate a transition within HSB discs from spiral arm-driven star formation to a more locally driven, possibly sporadic form of star formation at mu_B~24, a transition that does not appear to occur within LSB discs.Comment: Accepted to MNRA

    The Arecibo Galaxy Environment Survey: II. A HI view of the Abell cluster 1367 and its outskirts

    Full text link
    We present 21 cm HI line observations of 5x1 square degrees centered on the local Abell cluster 1367 obtained as part of the Arecibo Galaxy Environment Survey. One hundred sources are detected (79 new HI measurements and 50 new redshifts), more than half belonging to the cluster core and its infalling region. Combining the HI data with SDSS optical imaging we show that our HI selected sample follows scaling relations similar to the ones usually observed in optically selected samples. Interestingly all galaxies in our sample appear to have nearly the same baryon fraction independently of their size, surface brightness and luminosity. The most striking difference between HI and optically selected samples resides in their large scale distribution: whereas optical and X-ray observations trace the cluster core very well, in HI there is almost no evidence of the presence of the cluster. Some implications on the determination of the cluster luminosity function and HI distribution for samples selected at different wavelength are also discussed.Comment: 22 pages, 15 figures, 4 tables. Accepted for publication on MNRAS Main Journal. High resolution version of this paper can be downloaded at http://www.astro.cf.ac.uk/pub/Luca.Cortese/papers/ages_a1367.pdf . Datacubes and catalogs can be downloaded at http://www.naic.edu/~ages/public_data.htm

    The Effects of Starburst Activity on Low Surface Brightness Disk Galaxies

    Full text link
    Although numerous simulations have been done to understand the effects of intense bursts of star formation on high surface brightness galaxies, few attempts have been made to understand how localized starbursts would affect both the color and surface brightness of low surface brightness (LSB) galaxies. To remedy this, we have run 53 simulations involving bursts of star formation activity on LSB galaxies, varying both the underlying galaxy properties and the parameters describing the starbursts. We discovered that although changing the total color of a galaxy was fairly straightforward, it was virtually impossible to alter a galaxy's central surface brightness and thereby remove it from the LSB galaxy classification without placing a high (and fairly artificial) threshold for the underlying gas density. The primary effect of large amounts of induced star formation was to produce a centralized core (bulge) component which is generally not observed in LSB galaxies. The noisy morphological appearance of LSB galaxies as well as their noisy surface brightness profiles can be reproduced by considering small bursts of star formation that are localized within the disk. The trigger mechanism for such bursts is likely distant/weak tidal encounters. The stability of disk central surface brightness to these periods of star formation argues that the large space density of LSB galaxies at z = 0 should hold to substantially higher redshifts.Comment: 38 pages, 5 figures, 4 tables, tarred and compressed Also available on http://guernsey.uoregon.edu/~kare

    Strangers in the night: Discovery of a dwarf spheroidal galaxy on its first Local Group infall

    Full text link
    We present spectroscopic observations of the AndXII dwarf spheroidal galaxy using DEIMOS/Keck-II, showing it to be moving rapidly through the Local Group (-556 km/s heliocentric velocity, -281 km/s relative to Andromeda from the MW), falling into the Local Group from ~115 kpc beyond Andromeda's nucleus. AndXII therefore represents a dwarf galaxy plausibly falling into the Local Group for the first time, and never having experienced a dense galactic environment. From Green Bank Telescope observations, a limit on the H{I} gas mass of <3000 Msun suggests that AndXII's gas could have been removed prior to experiencing the tides of the Local Group galaxies. Orbit models suggest the dwarf is close to the escape velocity of M31 for published mass models. AndXII is our best direct evidence for the late infall of satellite galaxies, a prediction of cosmological simulations.Comment: 4 pages 5 figures 1 table, accepted in ApJ, july issu

    Hubble Space Telescope Planetary Camera Images of NGC 1316

    Full text link
    We present HST Planetary Camera V and I~band images of the central region of the peculiar giant elliptical galaxy NGC 1316. The inner profile is well fit by a nonisothermal core model with a core radius of 0.41" +/- 0.02" (34 pc). At an assumed distance of 16.9 Mpc, the deprojected luminosity density reaches \sim 2.0 \times 10^3 L_{\sun} pc3^{-3}. Outside the inner two or three arcseconds, a constant mass-to-light ratio of 2.2±0.2\sim 2.2 \pm 0.2 is found to fit the observed line width measurements. The line width measurements of the center indicate the existence of either a central dark object of mass 2 \times 10^9 M_{\sun}, an increase in the stellar mass-to-light ratio by at least a factor of two for the inner few arcseconds, or perhaps increasing radial orbit anisotropy towards the center. The mass-to-light ratio run in the center of NGC 1316 resembles that of many other giant ellipticals, some of which are known from other evidence to harbor central massive dark objects (MDO's). We also examine twenty globular clusters associated with NGC 1316 and report their brightnesses, colors, and limits on tidal radii. The brightest cluster has a luminosity of 9.9 \times 10^6 L_{\sun} (MV=12.7M_V = -12.7), and the faintest detectable cluster has a luminosity of 2.4 \times 10^5 L_{\sun} (MV=8.6M_V = -8.6). The globular clusters are just barely resolved, but their core radii are too small to be measured. The tidal radii in this region appear to be \le 35 pc. Although this galaxy seems to have undergone a substantial merger in the recent past, young globular clusters are not detected.Comment: 21 pages, latex, postscript figures available at ftp://delphi.umd.edu/pub/outgoing/eshaya/fornax

    Witnessing galaxy preprocessing in the local Universe: the case of a star-bursting group falling into Abell 1367

    Full text link
    We present a multiwavelength analysis of a compact group of galaxies infalling at high speed into the dynamically young cluster Abell 1367. Peculiar morphologies and unusually high Halpha emission are associated with two giant galaxies and at least ten dwarfs/extragalactic HII regions, making this group the region with the highest density of star formation activity ever observed in the local clusters. Moreover Halpha imaging observations reveal extraordinary complex trails of ionized gas behind the galaxies, with projected lengths exceeding 150 kpc. These unique cometary trails mark the gaseous trajectory of galaxies, witnessing their dive into the hot cluster intergalactic medium. Under the combined action of tidal forces among group members and the ram-pressure by the cluster ambient medium, the group galaxies were fragmented and the ionized gas was blown out. The properties of this group suggest that environmental effects within infalling groups may have represented a preprocessing step of the galaxy evolution during the high redshift cluster assembly phase.Comment: 23 pages, 13 figures, 5 table. Accepted for publication in Astronomy & Astrophysics main journal. Version with high-resolution images available at http://goldmine.mib.infn.it/papers/preprocessing.htm

    Phase transition in the collisionless regime for wave-particle interaction

    Full text link
    Gibbs statistical mechanics is derived for the Hamiltonian system coupling self-consistently a wave to N particles. This identifies Landau damping with a regime where a second order phase transition occurs. For nonequilibrium initial data with warm particles, a critical initial wave intensity is found: above it, thermodynamics predicts a finite wave amplitude in the limit of infinite N; below it, the equilibrium amplitude vanishes. Simulations support these predictions providing new insight on the long-time nonlinear fate of the wave due to Landau damping in plasmas.Comment: 12 pages (RevTeX), 2 figures (PostScript

    LCM2021 – the UK Land Cover Map 2021

    Get PDF
    Land cover is a key environmental variable, underpinning widespread environmental research and decision making. The UK Centre for Ecology and Hydrology (UKCEH) has provided reliable land cover information since the early 1990s; this supports multiple scientific, government and commercial objectives. Recent advances in computation and satellite data availability have enabled annual UKCEH land cover maps since 2017. Here, we introduce the latest, annual UK Land Cover Map representing 2021 (LCM2021), and we describe its production and validation. LCM2021 methods replicate those of LCM2017 to LCM2020 with minor deviations in cloud-masking processes and training data sourcing to enhance accuracy. LCM2021 is based on the classification of satellite and spatial context data into 21 land cover or habitat classes, from which a product suite is derived. The production of LCM2021 involved three highly automated key stages: pre-processing of input data, image classification and production of the final data products. Google Earth Engine scripts were used to create an input data stack of satellite and context data. A set of training areas was created based on data harvested from historic UKCEH land cover maps. The training data were used to construct a random forest classifier, which yielded classified images. Compiled results were validated against 35 182 reference samples, with correspondence tables indicating variable class accuracy and an overall accuracy of 82.6 % for the 21-class data and 86.5 % at a 10-aggregated-classes level. The UK Land Cover Map product suite includes a set of raster products in various projections, thematic and spatial resolutions (10 m, 25 m and 1 km), and land–parcel or vector products. The data are provided in 21-class (all configurations) and aggregated 10-class (1 km raster products only) versions. All raster products are freely available for academic and non-commercial research. The data for Great Britain (GB) are provided in the British National Grid projection (EPSG: 27700) and the Northern Ireland (NI) data are in the TM75 Irish Grid (EPSG: 29903). Information on how to access the data is given in the “Data availability” section of the paper.</p

    Star Cluster Formation and Evolution in Nearby Starburst Galaxies: II. Initial Conditions

    Full text link
    We use the ages, masses and metallicities of the rich young star cluster systems in the nearby starburst galaxies NGC 3310 and NGC 6745 to derive their cluster formation histories and subsequent evolution. We further expand our analysis of the systematic uncertainties involved in the use of broad-band observations to derive these parameters by examining the effects of a priori assumptions on the individual cluster metallicities. The age (and metallicity) distributions of both the clusters in the circumnuclear ring in NGC 3310 and of those outside the ring are statistically indistinguishable, but there is a clear and significant excess of higher-mass clusters IN the ring compared to the non-ring cluster sample; it is likely that the physical conditions in the starburst ring may be conducive for the formation of higher-mass star clusters, on average, than in the relatively more quiescent environment of the main galactic disc. For the NGC 6745 cluster system we derive a median age of ~10 Myr. NGC 6745 contains a significant population of high-mass "super star clusters", with masses in the range 6.5 <= log(M_cl/M_sun) <= 8.0. This detection supports the scenario that such objects form preferentially in the extreme environments of interacting galaxies. The age of the cluster populations in both NGC 3310 and NGC 6745 is significantly lower than their respective characteristic cluster disruption time-scales. This allows us to obtain an independent estimate of the INITIAL cluster mass function slope, alpha = 2.04(+- 0.23)(+0.13)(-0.43) for NGC 3310, and 1.96(+- 0.15)(+- 0.19) for NGC 6745, respectively, for masses M_cl >= 10^5 M_sun and M_cl >= 4 x 10^5 M_sun. These mass function slopes are consistent with those of other young star cluster systems in interacting and starburst galaxies.Comment: 17 pages LaTeX, incl. 11 postscript figures, accepted for publication in MNRA
    corecore