14,906 research outputs found
Relationship between spin squeezing and single-particle coherence in two-component Bose-Einstein condensates with Josephson coupling
We investigate spin squeezing of a two-mode boson system with a Josephson
coupling. An exact relation between the squeezing and the single-particle
coherence at the maximal-squeezing time is discovered, which provides a more
direct way to measure the squeezing by readout the coherence in atomic
interference experiments. We prove explicitly that the strongest squeezing is
along the axis, indicating the appearance of atom number-squeezed state.
Power laws of the strongest squeezing and the optimal coupling with particle
number are obtained based upon a wide range of numerical simulations.Comment: 4 figures, revtex4, new refs. are adde
Simulation of an enhanced TCAS 2 system in operation
Described is a computer simulation of a Boeing 737 aircraft equipped with an enhanced Traffic and Collision Avoidance System (TCAS II). In particular, an algorithm is developed which permits the computer simulation of the tracking of a target airplane by a Boeing 373 which has a TCAS II array mounted on top of its fuselage. This algorithm has four main components: namely, the target path, the noise source, the alpha-beta filter, and threat detection. The implementation of each of these four components is described. Furthermore, the areas where the present algorithm needs to be improved are also mentioned
A study of a collision avoidance system mounted on a curved ground plane
Research conducted on a traffic advisory and collision avoidance system (TCAS 2) mounted on a curved ground plane is described. It is found that a curved finite ground plane can be used as a good simulation model for the fuselage of an aircraft but may not be good enough to model a whole aircraft due to the shadowing of the vertical stabilizer, wings, etc. The surface curvature of this curved disc significantly affects the monopulse characteristics in the azimuth plane but not as much in the elevation plane. These variations of the monopulse characteristics verify the need of a lookup table for the 64 azimuth beam positions. The best location of a TCAS 2 array on a Boeing 737 is to move it as far from the vertical stabilizer as possible
Simulation of the enhanced traffic alert and collision avoidance system (TCAS 2)
The OSU aircraft code is used to analyze and simulate the TCAS 2 circular array which is mounted on the fuselage of a Boeing 737 aircraft. It is shown that the sum and difference patterns radiated by the circular array are distorted by the various structures of the aircraft, i.e., wings, tail, etc. Furthermore, monopulse curves are calculated and plotted for several beam positions and THETA angles. As expected, the worst cases of distortion occur when the beams are pointed toward the tail of the aircraft
Localized structures in Kagome lattices
We investigate the existence and stability of gap vortices and multi-pole gap
solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete
case and in a continuum one with periodic external modulation. In particular,
predictions are made based on expansion around a simple and analytically
tractable anti-continuum (zero coupling) limit. These predictions are then
confirmed for a continuum model of an optically-induced Kagome lattice in a
photorefractive crystal obtained by a continuous transformation of a honeycomb
lattice
Control of trapped-ion quantum states with optical pulses
We present new results on the quantum control of systems with infinitely
large Hilbert spaces. A control-theoretic analysis of the control of trapped
ion quantum states via optical pulses is performed. We demonstrate how resonant
bichromatic fields can be applied in two contrasting ways -- one that makes the
system completely uncontrollable, and the other that makes the system
controllable. In some interesting cases, the Hilbert space of the
qubit-harmonic oscillator can be made finite, and the Schr\"{o}dinger equation
controllable via bichromatic resonant pulses. Extending this analysis to the
quantum states of two ions, a new scheme for producing entangled qubits is
discovered.Comment: Submitted to Physical Review Letter
Measuring Fundamental Galactic Parameters with Stellar Tidal Streams and SIM PlanetQuest
Extended halo tidal streams from disrupting Milky Way satellites offer new
opportunities for gauging fundamental Galactic parameters without challenging
observations of the Galactic center. In the roughly spherical Galactic
potential tidal debris from a satellite system is largely confined to a single
plane containing the Galactic center, so accurate distances to stars in the
tidal stream can be used to gauge the Galactic center distance, R_0, given
reasonable projection of the stream orbital pole on the X_GC axis.
Alternatively, a tidal stream with orbital pole near the Y_GC axis, like the
Sagittarius stream, can be used to derive the speed of the Local Standard of
Rest (\Theta_LSR). Modest improvements in current astrometric catalogues might
allow this measurement to be made, but NASA's Space Interferometry Mission (SIM
PlanetQuest) can definitively obtain both R_0 and \Theta_LSR using tidal
streams.Comment: 8 pages, 4 figures, accepted for publication in ApJ Letters (minor
text revisions). Version with high resolution figures available at
http://www.astro.caltech.edu/~drlaw/Papers/GalaxyParameters.pd
An Investigation into the Structure and Reactivity of Calcium-Zinc-Silicate Ionomer Glasses using MAS-NMR Spectroscopy
The suitability of Glass Polyalkenoate Cements (GPCs) for orthopaedic applications is retarded by the presence in the glass phase of aluminum, a neurotoxin. Unfortunately, the aluminum ion plays an integral role in the setting process of GPCs and its absence is likely to hinder cement formation. However, the authors have previously shown that aluminum-free GPCs may be formulated based on calcium zinc silicate glasses and these novel materials exhibit significant potential as hard tissue biomaterials. However, there is no data available on the structure of these glasses. 29Si MAS-NMR, differential thermal analysis (DTA), X-ray diffraction (XRD), and network crosslink density (CLD) calculations were used to characterize the structure of five calcium zinc silicate glasses and relate glass structure to reactivity. The results indicate that glasses capable of forming Zn-GPCs are predominantly Q2/Q3 in structure with corresponding network crosslink densities greater than 2. The correlation of CLD and MAS-NMR results indicate the primary role of zinc in these simple glass networks is as a network modifier and not an intermediate oxide; this fact will allow for more refined glass compositions, with less reactive structures, to be formulated in the future. © Springer Science + Business Media, LLC 2006
Dynamic and Energetic Stabilization of Persistent Currents in Bose-Einstein Condensates
We study conditions under which vortices in a highly oblate harmonically
trapped Bose-Einstein condensate (BEC) can be stabilized due to pinning by a
blue-detuned Gaussian laser beam, with particular emphasis on the potentially
destabilizing effects of laser beam positioning within the BEC. Our approach
involves theoretical and numerical exploration of dynamically and energetically
stable pinning of vortices with winding number up to , in correspondence
with experimental observations. Stable pinning is quantified theoretically via
Bogoliubov-de Gennes excitation spectrum computations and confirmed via direct
numerical simulations for a range of conditions similar to those of
experimental observations. The theoretical and numerical results indicate that
the pinned winding number, or equivalently the winding number of the superfluid
current about the laser beam, decays as a laser beam of fixed intensity moves
away from the BEC center. Our theoretical analysis helps explain previous
experimental observations, and helps define limits of stable vortex pinning for
future experiments involving vortex manipulation by laser beams.Comment: 8 pages 5 figure
- …