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CHAPTER I

INTRODUCTION

The TCAS II is a midair threat-alert/conision avoidance system.

Once every second, the TCAS II system makes a complete survey of other

aircraft within a range of about 15 miles, measuring their altitudes,

distance separations, closing rates, and approximate bearings [1],

The azimuth bearing of the nearby aircraft is determined by the sum

and difference patterns of the TCAS II mounted on top of the aircraft.

Angle calibrations are done by a lookup table in the TCAS II processor.

This lookup table was created by measurements taken with the array

mounted on a circular curved ground plane. How well this curved ground

plane can be used to model the fuselage of an aircraft is crucial to the

system performance. This report is meant to answer this question.

As far as the report structure is concerned, it is divided into

three sections. The first section is used to analyze a circular array

and to study the scattering properties of a curved and flat ground

plane. The second section introduces the TCAS II system and the

corresponding computer model. The last section compares and examines

the monopulse curves of a TCAS II system mounted on a flat ground plane,

a curved ground plane and a Boeing 737. Conclusions are made at the end

of the report.



CHAPTER II

TCAS II CIRCULAR ARRAY ANALYSIS

A. INTRODUCTION

Due to the symmetry of a circular array, a beam can be scanned

through 360° with little change of beamwidth and sidelobe level. The

ability of a circular array in generating a directional pattern which

remains constant in shape over a broad bandwidth makes the circular

array practical for a number of applications. Such applications include

Direction Finding and Electronic Support Measurement System which is a

more sophisticated tracking system [2] than the TCAS II studied in

detail here.

B. PRINCIPLES OF A CIRCULAR ARRAY

The far-field patterns of a 2N-element circular array and a
sin(N()))

2N-element linear array are similar; they both have a . / , / 0 x pattern.si n( yi e.)
This similarity in far-field patterns means that all the pattern

synthesis techniques that can be applied to a linear array can also be

applied to a circular array. The next few sections will discuss and

make use of this concept. Note that this discussion is based on the

work of Sinsky, et al. [3] and as such follows his approach to the

problem. This information is presented here for the convenience of the

reader.



Consider a current ring perpendicular to the X-Y plane as

illustrated in Figure 2.1. This current ring can be seen as a circular

array made up of an infinite number of infinitesimal elements. The

pattern of each of these elements is F(e), and the element spatial phase

is Y(«). The field strength at a point (r,e,<}>) in the far-field is

proportional to the following integral:

°T

T/_\ JY(«)/, 9)=F(9)a da (2.1)

CURRENT
DIRECTION

TO OBSERVATION
POINT

Y =
-x.
a =

A _».

R -a

Figure 2.1. A thin current ring perpendicular to the x-y plane,



where

A A A A A

y(a) = kpa»R = ka(cosax+sinay)»R

2ira
or Y(O) = ~T~ sin9 cos(o-(|)) . (2.2)

-ikR 1Because multiplying constants are unimportant, the factors e and R"

are not included. Also, since the excitation function I(a) for this

continuous circular array is a periodic function with a period of 2ir

radians, I (a) can be expressed by a Fourier Series such that [4]:

N
K«) = I C exp(jma) ; N + » . (2.3)

m=-N m

Substituting Equation (2.3) into (2.1), one finds that

EU.9) = F(8)a f I C eJ(ma+kas1necos(a-*))da; H~ . (2.4)
0 m=-N m

By the following identity [2]:

JmJ (8) = ?? / eJ^^'V d* (2.5)m 0

one obtains that

N
EU.8) = F(9) 2*3 I Cm jmjm(kasin9) ej"1(p; N>» (2.6)

m=-N

Note that Jm is the Bessel function of 1st kind, order m.

When the number of elements in this array is finite, the far-field

pattern can still be approximated by Equation (2.6). An N-element array

is drawn in Figure 2.2. It is found that the number of elements in the



l=N =V j=2

ARRAY ELEMENT* I

Figure 2.2. A N-element array

array is the same as the number of modes that can be excited [3]. For

example, if there are eight elements in the array, the number of modes

will also be eight. In other words, if N=8, the mode number m will be

equal to -3,-2,-1,0,1,2,3,4, with a total of eight modes. As a result,

if N is even, Equation (2.3), evaluated at o-j, can be written as

N/2

^m=-N/2+l
Cm exP(J'~ 1 (2.7)

u , th
where a.. = ~j7~ as in Equation (2.3). The excitation of the i element

can then be written as follows:



N/2
I. = I A. exp [ j (P , + 2TTU/N)] (2.8)

where A =amplitude of the SL mode input
Xf

P = phase of the a mode input, and

Amexp(jPm) = Cm in Equation (2.7).

Based on Equation (2.8), it can be seen that the element

excitations are determined by the mode inputs. In order to determine

the correct mode inputs required to produce a desired antenna pattern,

it is first necessary to remove the mode biases [3], A mode bias is

defined as the complex radiation intensity (relative to the array

center) resulting from the excitation of the fctn mode input. Consider

the approximate far-field pattern given by Equation (2.6) such that

N
EU.8) = F(8)2Tia I C jmJ (kasin9)ejm<|) ; N is finite .

m=-N m m

If Cm = (2TraF(eQ) jmJ (kasineQ)) for a particular 9Q, then

,2N+1 ,
N . sin ( jpH

EU) = I eJm* = - Hp - (2.9)
m=-N sin -^

where

(C ) is the mode bias, and C is the mode excitation.m m

This is nearly identical to the formulation for linear arrays. The

radiation pattern of a linear array of 2N+1 isotropic elements is given

by



,2N+1 %
N . sinf~5—U)

E(U) = I A ejnuj = —4 (2-10)
m=-N m sin -

where

u = (2uaA)sin<j> ,

<(» is the angle off broadside and a is the element spacing of the linear

array. Comparing the above two radiation patterns, it can be seen that

the mode compensated circular array will produce the same antenna

pattern in angle space as that of a linear array in sine angle space.

Consequently, the use of the Fourier technique for exciting circular

arrays means that all the pattern synthesis techniques for linear arrays

may be transferred to circular arrays. In particular, the Tschebyscheff

linear array weighting function can be applied to calculate the mode

excitations.

In conclusion, once the mode biases are known, the element

excitations can be computed by Equation (2.8). Furthermore, for an

array with element patterns independent of the angle <)>, the mode biases

are determined by the elevation angle 9 of the field point.

C. THE MODE BIAS CALCULATION

To compute the mode biases, one needs to know the element

pattern and the far-field pattern of a N-element array. In general, our

aircraft code can be used to find the element and far-field patterns of

an N-element array. However, for simplicity, the example in Sinsky's

paper [3] is followed as an illustration of the mode bias calculation.



Assume the ith element pattern of a circular array is hypothesized by a

cosine on a pedestal about an axis which is rotated by ps from the

azimuth angle of the itn element <$>-\ and tipped up from the X-Y plane by

as [3]. The diagram of this is shown in Figure 2.3. Furthermore, as

illustrated in Figure 2.4, the element pattern has a shape given by

F^e,*) = l+KX i (2.11)

where X is the cosine of the angle between the boresight of the i
->• •>

element (B.) and the direction (P). Note that

K . (io
FB/20-i) / (io

F6/2rVn

with FB defined as the front-to-back ratio. The mathematical expression

for X. is given by a simple expression, namely;

= sine cosa$ [cosU-fj-f^)] + cose sin«s (2.12)

If each element pattern has the shape such that

«s = o, ps = o

then

Xi = sine [cosU-^)] . (2.13)

The far-field pattern from an N-element array is given by



N
I F (e,*)I exp(jY.) (2.14)

i=l 1 n n

where

F.(9,<|>) is the element pattern of the i element in the radiation

direction (6,4>),

Y- is the spatial phase of the i element relative to the center

of the circular array which is given by

Y.J = (2na/X) sin9 [cosU-̂  )], and

I. is the complex element excitation on the i array element and

is defined by Equation (2.8).

After the element pattern and the far-field pattern of an N-element

array have been computed, the mode biases can also be found. As

indicated before the mode bias is defined as the far-field radiation

intensity resulting from excitation of the £tn mode input. For

convenience, when computing the mode bias, the mode input is defined to

have a unit amplitude and zero phase. Combining Equations (2.11),

(2.13), and (2.14), the far-field equation for a circular array, when e

is 90°, is given by

N o
E(0=90°,<f>) = I ((1+Kcos($-$.)) exp j(2irU/N) exp[j—— cos($-4>.)]

i=l

(2.15)

which is also the mode bias for the a mode input.



ELEMENT PATTERN
BORESI6HT

0*90

OBSERVATION
POINT

ill! ELEMENT WITH
COORDINATE (O t0 = 90

P = sine cos$ x + sine sin<|> y + cose z

A A A

B. = cosa cos(«fc.+0 ) x + cosa sin(<j>.+0 ) y + sina z
\ J l d w i l d S

Figure 2.3. An element pattern from a circular array.
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ISO* Xj-oe

A COSINE PATTERN

Xi*B:.p

COS/j

270°

= 270*

PATTERN FOR

PATTERN FOR
I 4-KXj

Figure 2.4. The shape of an element pattern,
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This far-field pattern may not be realized by any antenna since the

element patterns defined in Equation (2.11) are only hypothetical.

However, when the angle 9 is 90°, this far-field pattern gives a good

approximation to the far-field pattern of a TCAS II array as far as the

magnitude is concerned. A TCAS II array will be discussed in Chapter

IV. Table 2. 11 (a) shows the mode biases for the array with the

hypothetical element patterns, which give an approximation to the true

mode biases of a TCAS II array. As has been done in Reference [3],

these approximate mode biases will be applied to a TCAS II array so as

to illustrate some basic properties of the circular array.

If the mode excitations are set proportional to the reciprocal of

these mode biases, then each mode taken one at a time will produce a

eJ"1* pattern in the direction (90,<|>). The overall pattern can be

approximated by

r( 2
sinU/2) for a Part1cular V

whereas, in our example, e is chosen to be 90°. If the phase

difference between adjacent modes is $ radians, the resulting pattern

can be expressed as

sin (— 2~U-$0))
E(4>) = • for a particular 90, (2.17)

<Hfrp_
sin (— jr)

which is the original pattern rotated by <|> radians. Note that Equation

(2.17) can be obtained from Equation (2.18) or (2.19) by changing the

mode excitation C in Equation (2.20) or (2.21) to C e

12



D. COMPUTATION OF THE TSCHEBYSCHEFF HEIGHTS

The use of the Fourier technique for exciting a circular array

allows the use of all the pattern synthesis techniques for linear

arrays. To show this explicitly, let us consider the following

approximate far-field pattern of an N-element circular array:

N
N/2-1 JT*

E(<|>) = L A ej 9 + A.1/0 e when N is even (? -\o\m n/c. \ e -» A° /
m=-N/2+l

or

E(<|>) I A ejm<p when N is odd. (2 19)
m=-(N-l)/2

The above two equations come from Equation (2.9) with Am defined as the

mode weight, or in this case, the Tschebyscheff weight. When the

element number (N) is finite, Equation (2.14) gives a much more accurate

representation for the far-field pattern. However, the approximate

far-field pattern, expressed by Equations (2.18) and (2.19), is used

here to show the relationship between the far-field pattern and the

current distribution. The equation for the current distribution is

given by

N/2-1 jmo. jTa.
K«i) = I A C e 1 + AN/9 CN/9 e

 i 1

i __ M / o 11 mm N/t IN/Cm=-N/£+i
when N is even (2.2o)

or

(N-l)/2 jma
I (a-) = \ A C e when N is odd (2.21)

where C is the mode excitation and A is the mode weight,m m

13



Both the current distribution and the far-field pattern are a function

of the variable (Am). The manipulation of this variable by pattern

synthesis techniques can give the desired far-field pattern. To realize

this far-field pattern, the same variable, or the so-called mode weight,

needs to be muti plied to the mode excitation to get the correct current

excitations. Futhermore, when N is even, to obtain a sinN<t>/sin<)>

pattern, mode N/2 is usually not excited so as to get a symmetry in the

modes excited.

If a Tschebyscheff pattern is desired, the mode amplitude

distribution must be tapered. Consider the far-field pattern of a

circular array given by

(N-D/2 . .
'

where A =A and N is odd. Since the right side of Equation (2.22) can

be expressed as a polynomial of order N-l in the variable cos(<f>/2), it

can be matched to the Tschebyscheff polynomial TN .(U) by letting

U = UQ cosU/2)

in which U is selected so that TN i(U )=r, with r being the desired

main beam to sidelobe voltage ratio.

Elliot [5] found that the Tschebyscheff coefficients in Equation

(2.22) can be approximated by a series such that

Am = ao + 2 E a cos(p2irra/N) (2.23)
p=l

14



where
1 TT£

ap = * TN-1 (Uo cos N)

ao = * TN-1 < V

and TN is the Tschebyscheff polynomial.

Combining the above two equations, the mode weights can be expressed as

1 (N-D/2 ^
Am = "N 'TN-1 ̂ Uo^ + 2 z TN i(u0

 cos N)COS (p2irm/N)} (2.24)

when N is odd. Similarly, as pointed out in Reference [3], the

following equation also holds:

1 N/2-1 up
Am = N" fTN 1(V + 2 Z TN l(Uo COS N) cos(p(2m+l)Tr/N)} (2.25)p=l

when N is even.

E. SUN AND DIFFERENCE PATTERNS

A circular array of an even number of elements has a radiation

pattern given by Equation (2.18). Because of the property of

Tschebyscheff weights, the coefficient (A ) is equal to the coefficient
N

(A ). Furthermore, since mode "•? is not excited, Equation (2.18) can be

rewritten as follows:

N/2-1
EU) = AQ + 2 I Am cosm* , (2.26)

m=l

which gives a sum pattern.

15



If current is excited such that

Am - -

then

N/2-1
= A + 2j I A sinm<|>

m=l m

To get a difference pattern, A must be set to zero,

N/2-1
E ( + ) = 2j I A sinmt|>

m=l m

(2.27a)

This implies that

(2.27b)

The monopulse characteristic equation is given as follows [3]:

S+jA
M = 201og10 S-JA

By the previous two equations; one can find that

N/2-1

M = 201og10

A + 2 £ A (cosm<|>-sinm<t>)
m=l

N/2-1
A + 2 i A (cosm<|>+sinm<t>)

m=l

(2.28)

(2.29)

F. SIMULATED RESULTS

A computer program has been written to find the sum and difference

mode excitations. The results are listed in Table (2.1). Substituting

these sum and difference mode coefficients into Equation (2.29), a

theoretical monopulse curves curve is obtained. This curve compares

favorably with the monopulse curve obtained by UTD from finding the

far-field pattern of a circular array mounted on a flat ground plane.

16



These two monopulse curves are shown in Figure 2.5. When the target

angle is outside the -25° to 25° range, the two monpulse curves do not

agree very well; however, each beam position is only useable by the

system for a small angular range which is less than ±25°.

Figures 2.6(a) and (b) show the sum and difference beams when the

side lobe levels are 50 and 30 dB, respectively. Figure 2.7 shows that

the sum and difference beams can be rotated without changing the pattern

shape.

17



TABLE 2.1

TABLE FOR GENERATING SUM AND DIFFERENCE MODES

(A) THE MODE BIASES FOR 30 dB SIDE LOBE LEVEL;

i.e. C"1- E(90°,0°) from Equation (2.15)

MODE

-3
-2
-1
0
1
2
3
4

VOLTAGE
(in volts)

0
1
1
0
1
1
0
0

i.e

.7705

.4050

.1957

.9377

.1957

.4050

.7705

.8570

dB

-2
2
1
-0
1
2
-2
-1

(8) THE MODE

.2649

.9534

.5527

.5584

.5527

.9534

.2650

.3400

DEGREE

-106
176
123
137
123
176

-106
- 33

WEIGHTS;

.3775

.7064

.7852

.7721

.7848

.7055

.3784

.1587

. Am from Equation (2.25)

MODE

0
1
2
3

dB

0.0000
-1.1716
-4.9089
-11.5605
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TABLE 2.1 (Continued)

(C) THE SIJM MODE EXCITATIONS;

i.e., Â n, in Equation (2.20) or (2.21)

SUM MODE

-3
-2
-1
0
1
2
3
4

dB

-9.2956
-7.8623
-2.7243
0.5584
-2.7244
-7.8623
-9.2955

-100.0000

DEGREE

106.3775
-176.7064
-123.7852
-137.7721
-123.7848
-176.7055
106.3784
33.1587

(D) THE DIFFERENCE MODE EXCITATIONS;

i.e., AmCm with Ap, defined in Equation (2.27a)

DIFFERENCE MODE

-3
-2
-1
0
1
2
3
4

dB

-9.2956
-7.8623
-2.7243

-100.0000
-2.7244
-7.8623
-9/2955

-100.0000

DEGREE

286.3874
3.2945
56.2152

-137.7721
-123.7848
-176.7055
106.3784
33.1587
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(a) A monopulse curve obtained by UTD from finding the
far-field pattern of a circular array mounted on a flat
ground plane.
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(b) A monopulse curve obtained by Equation (2.29).

Figure 2.5. Comparison of monopulse characteristic results.
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Figure 2.7. Sum and difference beams with a pattern rotation of 45e

to the right.
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CHAPTER III

NONOPOLE RADIATION FROM A CURVED AND FLAT GROUND PLANE

A. INTRODUCTION

The principal analytical tool used to analyze the radiation of an

antenna mounted on a curved or flat ground plane is the Uniform Theory

of Diffraction (UTD). Basically, UTD is an extension of Keller's

Geometrical Theory of Diffraction (GTD) [6]. However, unlike GTD which

fails in the regions adjacent to the incident and reflection shadow

boundaries, the UTD solution is valid everywhere. In this chapter, the

radiation pattern of a TCAS II system mounted on a curved and flat

ground plane will be analyzed using UTD. The patterns will later be

compared with those obtained from a TCAS II array mounted on a Boeing

737 aircraft. The corresponding monopulse characteristic curves will

also be compared.

As will be shown later, the TCAS II system can be modeled by a

circular array of eight pairs of monopoles. According to geometrical

optics, each monopole will divide the surrounding space into a lit and a

shadow region by a plane tangent to the surface at the source location.

Distinct mechanisms are used to calculate the field patterns in these

two regions. References [7], [8] and [9] provide a good background for

this material.
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B. SHADOW REGION

According to the generalized Fermat's principle, a ray emanating

from a source, which is located on a curved surface, follows a geodesic

path on the surface and continually sheds energy into the shadow region.

Such a creeping wave mechanism is illustrated in Figure 3.1. Point Q is

the point of diffraction where the ray leaves the surface and propagates
A

toward the observation point. As illustrated in Figure 3.2, n" is the
A A

unit surface normal vector, t' is the unit tangent vector and b' is the
A A A

unit binormal vector given by b'=t'xn' at the source point 0'. Similiar

vector convention is used along the geodesic path.

It is found that the field dE radiated by an infinitesimal

electric current moment dP at point p can be expressed as [10]

dEe(Ps) = d Pe(Q
l)-Cn'nT5(Q')H+n

lb Tg(Q')s] e'

... i
PC

' """ ^ 0.1)S(PC+S) V dn(0)

where Tc and J, are the torsion factors at 0' and are given in Tableb o

3.1. H and S are the uniform Fock functions whose expressions are given

below:

H = g(e) (3.2)

S = T g i v g(e) (3.3)

with

/ x JL ," exp(-jte)
9(e) = /7 / dt W 2 ' ( T ) (3.4)

«exp(-j2Tr/3)

and
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TABLE 3.1

PARAMETERS FOR SHADOW RERION

tin or CONVEX
SURFACE

WMIftC

CIRCULAR
CYLINDER

ARilTRARf
CONVEX

SURFACE

SLOT OH «9m e»«

T, (O'l

1

1

1

TtIO'l

1

1

1

TjlO'l

0

«I«1«'T •
1* •!«• •'

TtOV (O'l

T4(0'l

0

0

o

MONOPOIC OH
«».e*ii

T.IO'I

1

1

1

T,IO'I

0

•ui«' t «
II «!•• •

TtO'l^lO'l

w»r»ci HAT
TOMSIOH

TIO'I

0

•!•!•'
!•

»!•!«•/ 1 1 \
s V»,(o'i «,(«•)/

• ITH d,IO'l t NtIO'>

tUIFACt IAOIU*

OTCUDVATUM W

V nitcTio*

?((cn

•

•
•!•' •'

r«..v «iA'\-i
^•î rJ

(wince
nrr*Aeno
IAT CAUXTK
OIITAICI

n

• •..(7)

t

tyi •
*«/»l

LENGTH OP AMC 0'0*0>»

DISTANCE |0iy ••
LENGTH OF AMC O'O** t,

AXIAL
KAY PATH
O'OP,

DIFFRACTED
WAVEFMONT

ATP t >

Figure 3.1. Perspective view of a surface diffracted ray tube,
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A. A, A,
I'* n'= b1

Figure 3.2. Ray path in the shadow region.

"i \ — ( A exP(-JT£)
9(e) « rr ] dt w? T/ir -exp .J2w/3) ZV (3.5)

which are known as the acoustic hard and soft Fock functions,

respectively. The Fock type Airy function is given by

«exp(j27r/3)
dt-exp(tt-t3/3) (3.6)

and w« (T) is the derivative of w. (T) with respect to T. The Fock

parameter for the shadow region is given by
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rQ , m(t')e =J dt pgTtT (3.7)
0

with

m(t') =
Cpg(t')- 1/3

(3.8)

where pg(t') is the surface radius of curvature along the ray path at

t1. The width of the surface ray tube at Q is given by

dn(Q) = P(.d̂  (3>9)

where p is the surface diffracted ray caustic distance; t is the length

of the geodesic path.

C. LIT REGION

In the lit region, the radiated energy propagates directly from the

source to the observation point along the incident ray of geometrical

optics as shown in Figure 3.3. The electric field at Pj_ in the lit

region can be expressed as [10]

where — s — represents the spherical wave factor associated with the

point source at 0' and dP has been defined in section R. The explicit

form of the dyadic transfer function is found to be [10]

?£ = Z sine1 [n'n (H^+TFcose1) + n'b T F] . (3.11)e Q Q
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Figure 3.3. Ray path in the lit region.

,
The Fock functions H and S for the lit region are defined as follows:

H*(e*

-je*/3
3

/̂T~ ,-j2ir/3

-JeS
e

dr—; (3.12)

and

W2(t) (3.13)

where the functions W and W have been defined previously in Equation

(3.6). The Fock parameter e for the lit region is given by

i 2 2 -J -1/3 -i
(Q1) cose = -m(O') [1+T cos e ] cose . (3.14)
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The angle 61 is defined by s-n'^cose1 as shown in Figure 3.3. Finally,

F is given by

(3.15)F = , _ 2 T
1+T cos 91

0

as defined in Table 3.2. The other parameters are the same as in the

shadow case.

TABLE 3.2

PARAMETERS FOR LIT REGION

SLOT OH «»aCAIC

A

N'*TjTeo.0'

•

,1 T*T.0.*fl
l

e

TO*

0

Ve.tfi'

•ONOPOLC M <», CASE

•

•l.ff'fM^ToTeo.e']

H

•i.8'T0T

TO

T(O') ̂ (O1)

T

I1--1...*'
l»Ti«..«'
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D. PATTERN FACTOR

The general solution for a short monopole mounted on a convex

surface has been given in the previous two sections. To get a solution

for a linear antenna problem, one needs to integrate the above solution

over the source distribution. This gives an accurate solution but is

very tedious. A more efficient approach is to modify dP (O1) as shown

in Reference [11] such that

(a) in the lit region

Pe = n' [l-cos(KL)] (3.16)

(b) in the shadow region

„ cos(KLn'.s)-cos(KL)
P e = n > , , « , V ( 3 . 1 7 )

l-(n'«s)

where L=the length of the monopole. L should not exceed a quarter

wavelength for the solution to be valid.
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E. SOLUTIONS OF A CURVED GROUND PLANE

The previous three sections gave generalized results to a monopole

mounted on a convex surface. As illustrated in Figure 3.4, the curved

ground plane being considered here is part of a circular cylinder.

Thus, solutions that can be applied to a circular cylinder can also be

applied to the curved ground plane. Edge diffraction must be included

in the curved ground plane solution which will be discussed in the next

section. Combining equations in the previous three sections, Reference

[121 gives expressions for near-zone fields due to a monopole radiating

from a circular cylinder as follows

(a) Lit Region: (see Figure 3.5)

-jks

>'= piit < -<v1
A} *• (3.18)

ie, = P11t { cose
1 .

-jks

with

Plit =
-jZo

} 8'

cos(kLn'»s)-cos(kL)

[l-(n'sV] sin(kL)

and
kasine' 1/3 * *

1/3"

(3.19)

(3.20a)

(3.20b)
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SOURCE

FIELD POINT

Figure 3.4. The curved ground plane is part of the surface of a
circular cylinder.

Up.Vp.Zp)

Figure 3.5. Ray geometry in lit region.
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(b) Shadow Region: (see Figure 3.6)

PgTQT

1/6

: _ p
"b Kdark

with

2 1/3~
"J Up (Q'jcosW^

Pg(O')

1/6

dark
-jZo l-cos(kL)

4n I "TfnTkLT f

(3.216)

(3.22)

Note that the expressions in the lit region are derived by

employing Ivanov's result [12]. Thus, these expressions are not the

same as those obtained by IJTD. However both expressions agree with the

measured results as shown by Wang [12],
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ANTENNA
LOCATION

Q \ "i
ANTENNA
LOCATION

Figure 3.6. Ray geometry in shadow region.

F. EDGE DIFFRACTION FROM A CURVED GROUND PLANE

The Uniform Geometric Theory of Diffraction developed by

Kouyoumjian and Pathak [71 was used to solve the edge diffraction

problem. DTD is a ray optical technique which allows one to gain

insight into the physical mechanisms involved in the scattering of the

structure. As shown in Figure 3.7, the incident ray will diffract as a

cone of rays satisfying the law of diffraction; namely, one finds that

= d»e (3.23)
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Figure 3.7. A cone of diffracted rays from a curved ground plane.

*

where I is the incident unit vector from the source to the diffraction

point,

d is the diffraction unit vector, and

e is the unit vector parallel to the diffracting edge.

An edge fixed coordinate system is introduced to define the

polarizations of the incident and diffracted fields. This coordinate

system can he expressed as follows:

A A A A A

$' = -e x I / |e x I|
A I A A

80 = *' x I
A A A A A

< f i = e x d / | e x d | , a n d

00 = * x d (3.24)
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As illustrated in Figure 3.2, the surface diffracted field dEe at

point ps in the shadow region can be expressed as follows [14]:

dEe(Ps) -

where

h
HQ = I L (Q 1 ) exp[-jkt - / c£(t l)dt1]-\/3fiflh'D"(Q) and

P Q'

and

S0 - I L* (Q ' ) expC-jkt - /_ o£(f )dt']YdntbT Dp<°> • (3.25)

s,h s,h
Note that Dp and ap are the Keller's surface diffraction and

attenuation coefficients respectively [6], They are both related to the

Airy function, and Lp' are the lauching coefficients. Equations (3.1)

and (3.25) are two asymptotic representations to the surface diffracted

field in the shadow region. In the deep shadow region, Equation (3.25)

works better; in the region near the shadow boundary, Equation (3.1)

gives a better result. The surface ray field between Q1 and Q is not

the true field on the surface; it is a boundary layer field [61. If the

surface ray field comes to an edge, the true field of this incident ray

can be approximated by Equation (3.25) with the modification of the

following parameters [14]:

DJJ(Q) = | D*d9e LJJ(Q) and (3.26)

edge I
s I £Ds | s *

WO) = 2 [ a4. ]|6.=o (LD(0)) sinf, - (3.27)
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Again, Dp and Dp are the diffraction coefficients for the soft and hard
edge edge

cases, respectively; whereas, Os and Dn are the usual edge
h s

diffraction coefficients [15]. Furthermore, Lp and Lp are the

attachment coefficients. By reciprocity, they are the same as the

launching coefficients.

The expression for the incident ray can be simplified if the

following relationship is utilized [141:

0 u

1
2 I

p

-/n,a'(t')dt'
)e Q P L (Q) = v(e)//t, and

L
D
{0>= ̂ 7ra{e)p K K M. V L

where v(e) and u(e) are the generalized Fock integrals defined in

Reference [15].

The resulting diffracted field can be expressed as follows:

-d kZo -
dEe(Ps) = - j "4T" dPe(Q')-

(3.28)

(3.29)

.
_-n'(b.B0)30T0

/T (P+S)S (3.30)

Note that p is the second caustic location related to the edge

diffracted field and is defined in Equation (3.47). All other

parameters are the same as those in the shadow region unless they have

been specified otherwise in this section.
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Expressions for the soft and hard edge diffraction coefficients are

given as follows:

-e

s , h 4 » ' ' sine cot (—) F(Kl a+(ff))

'
cot (ZFT) F(KL a'(e')) + { cot -} F ( K L . a ' ) )

IT 8+

cot (-gjr) F(KL£a"(0+)) } (3.31)

where the minus sign applies for DS and the plus sign applies for the

D. . The angle parameter 0 is given by

and

a±(B±) = 2 cos2
2irnN±-B±

(3.32)

The number (N) is desined as the integer which most nearly satisfy the

following equations [16]:

and

2irnN+-0± = IT

2irnN" - 0 = -IT

Then, 0'is associated with the incident field and 0+ is associated with

the reflected field. The wedge angle number (N) is given by

WA
n = 2-— (3.33)
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and the wedge transition function is expressed as [16]

F(x) = 2j /x ,-Jt2 dt
/x

(3.34)

The magnitude and phase of this transition function is shown in Figure

3.8. The distance parameter (L ) which is equal to tsin2s for the

curved ground plane case. Also other parameters are defined as follows:

<J> = it - tan -1 d»n

<J> ' = 0

i * *
= cos ( e»d)

and

n = 2.

G. SOLUTIONS OF A FLAT GROUND PLANE

Figure 3.9 shows the structure of a flat ground plane. The

solution for a monopole mounted on the surface is given by:

(a) Incident Field

E1 =

,-JkR

9P l it Sln8~? 0 < 9 < 90°, and

otherwise

where P,. is defined in Equation (3.20),

(3.35)
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100

Figure 3.8. Transition function.

TO FIELD
POINT

Figure 3.9. Geometry of a monopole radiating from a flat ground plane.
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(b) Diffracted field

- » - T ' E (3.36)

where

H is defined in Equation (3.31) and
A

$ is defined in Equation (3.24).

The second caustic location (p) related to the edge diffracted field and

is given by

A A A

1 ne*(s'-s)

where nQ is the normal to the edge curvature. The incident field (E1.,)
Q A

is given by

e-jks'

Ei' = Plit~^~ (3.38)

Finally, the total field is the sum of the diffracted field and the

incident field. Some patterns will be run in Chapter V.
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CHAPTER IV

TCAS II SYSTEM

A. INTRODUCTION

The TCAS II system is a midair collision avoidance system which

consists of top and bottom mounted, eight-element, electronically

scanned arrays. These arrays radiate sum and difference beams at 1030

MHz and are designed to receive replies at 1090 MHz. Transmissions are

scanned electronically around 360 degrees in azimuth in 5.625 increments

with a total of 64 different beam positions. The receiver can provide

target bearing estimates with an accuracy of one degree. The bearing

estimates are combined with altitude and slant range information to

generate accurate 3-D target position and velocity estimates [17],

Figure 4.1 illustrates a TCAS II system in operation [1],

B. THE TCAS II SYSTEM

The TCAS II system employs a pair of 10.5 inch diameter circular

arrays of eight top loaded monopoles. A Butler Matrix is used to

generate the sum and difference patterns as shown in Figure 4.2.
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Figure 4.1. A TCAS system displays a commercial plane (center) and two
encroaching planes. The transponder on one of the latter
planes has an altitude-reporting feature (-12 indicates it
is 1200 feet below the TCAS plane); the second plane's
transponder lacks this feature, as indicated by the
question marks [11.
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CENTER ELEMENT
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1 2

MATRIX

3 -3 -2 •1

Figure 4.2. Beam forming network which uses a Butler matrix to
determine the element excitations.

The Butler Matrix operates in such a manner that given the mode inputs,

the normalized element excitations are given by [31

N/2
I (A£) exp [JP£ + J2TTU/N]

where

E- = complex excitation of the i element (volts)

A = amplitude of the 1 mode input (volts)
iff

P = phase of the 1 mode input (radians)
J6

M = complex excitation of the 1 mode (volts), andx>

N = number of elements (in this case N=8).

(4.1)
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A circular array is shown in Figure 2.2 in which the elements are

numbered counterclockwise. The x-axis in Figure 2.2 points toward the

nose of a aircraft when the y-axis points toward the right wing. To

steer the beam 9 radians in the counterclockwise direction, a negative

phase gradient is applied across the mode inputs such that

JCP.-48]
M* - \ P * ^

When the beam is pointing toward the nose of the aircraft, the mode and

element excitations are given in Table 4.1. The corresponding sum and

difference patterns, if neglecting the effects of the tail and wings of

the aircraft, are shown in Figure 4.3. The target reply will be fed

into a Squinted Beam Monopulse Processor, the output of which gives a

monopulse curve. The monopulse characteristic curve corresponding to

the above sum and difference patterns is shown in Figure 4.4. The 64

monopulse curves corresponding to the 64 beam positions are not quite

the same curve. To determine the actual azimuth angle of a target, the

processor output is compared with a lookup table to compensate for the

differences between the 64 monopulse curves.

C. COMPUTER MODEL OF THE TCAS II SYSTEM

The OSU aircraft code is used to simulate the radiation patterns of

the TCAS II mounted on the top of a Boeing 737. The circular array is

modeled by eight pairs of monopoles as shown in Figure 4.5. Each

monopole pair is used to model a top loaded monopole. In order to
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TABLE 4.1

MODE INPUTS AND ELEMENT EXCITATIONS FOR Z AND A BEAMS
AT ZERO DEGREE AZIMUTH

(a) ELEMENT EXCITATIONS FOR E AND A BEAMS
AT ZERO DEGREES AZIMUTH (TOWARD NOSE OF AIRCRAFT)

ELEMENT EXCITATIONS: SUM BEAM

ELEMENT NO. AMPLITUDE PHASE (DEGREES)

1 ,482 32.3742

2 .109 37.8493

3 .234 -78.1094

4 .232 -48.9456

5 .240 -78.2374

6 .105 35.5149

7 .477 32.0745

8 ,592 9.1814

ELEMENT EXCITATIONS: DIFFERENCE BEAM

ELEMENT NO. AMPLITUDE PHASE (DEGREES)

1 .371 90.9364

2 .537 135.1673

3 .137 150.721

4 .104 ' 4.03708

5 .259 -.270649

6 .543 -42.3221

7 .427 -88.7265

8 .021 -30.3929
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TABLE 4.1 (continued)

(b) MODE INPUTS TO BUTLER MATRIX TO PRODUCE THE
AND A BEAM ELEMENT EXCITATIONS

MODE INPUTS: SUM BEAM

XCDE HO. AMPLITUDE (VOLTS) PHASE (DEGREES)

-3 .152 -99.9442

-2 .214 " -19.8993

-1 .473 46.14

0 .644 3

1 .478 45.163

2 .214 -20.545

3 .152 -99.671

4 .00101 0

MODE INPUTS: DIFFERENCE BEAM

MODE NO. AMPLITUDE (VOLTS) PHASE (DEGREES)

-3 .209 76.0642

-2 .254 151.01

-1 .683 -142.86

0 .102 4

1 .537 39.163

2 .324 -24.545

3 .161 -105.67

4 .00101 0
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NORMALIZED TO 8.0 dB
ETH POLARIZATION
FREQ. • 1.06 GHz
THC -90.0
PHC - 0.0
THETA • 75.0

MIL

(a) Sum beam

(b) Difference beam

Figure 4.3. Sum and difference beams pointed in the nose direction.
The aircraft is modeled by a fuselage only.
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(a) Ideal TCAS II monopulse characteristic curve.

CONICAL FATTCAN ANCLE

•EAN POSITION

to
0

Oo

-20. -IS. -10. -S. 0. S.
ANCLE

10. IS. 20. 25.

(b) Expanded monopulse characteristic curve showing
linearity around antenna boresight.

Figure 4.4. Ideal TCAS II monopulse characteristic curve and its
expanded version.
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LEFT
WING

MONOPOLE PAIR USED
TO SIMULATE ONE
ARRAY ELEMENT

TOP VIEW

NOSE

FREQUENCY-1.06 GHz

RIGHT
WING

TAIL

MONOPOLES

SIDE VIEW

Figure 4.5. Geometry of the computer model that was used to simulate
the circular array.

50



include the coupling effects between the top loaded elements, the model

has been designed as follows. First, the two monopoles in every pair

are separated by X/4 and out of phase by 90°. Second, the radiation

pattern from each monopole pair will give a 15 dB front to back ratio.

The above requirements can be achieved by exciting the inner monopole of

each pair with a signal of amplitude (.698) and phase (45°) and the

outer monopole with amplitude (1.0) and phase (-45°), as defined by

Sinsky [18],

To generate a pattern cut, the aircraft code is executed eight

times. Each execution gives a pattern cut due to one pair of elements.

The sum and difference patterns are obtained by first multipling the

corresponding element excitation to each element pattern, then summing

the eight weighted patterns to produce a steered s or A beam.
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CHAPTER V

ANALYSIS OF TCAS II SYSTEM ON A CURVED SURFACE

A. INTRODUCTION

The objective of this chapter is to answer the following questions:

Can a curved ground plane be used to model the structure of an airplane;

or, at least, can it be used to model the fuselage of an aircraft? To

answer these questions, two programs have been written. The first

program simulates the far-field patterns of a TCAS II mounted on a flat

ground plane. The second program models the TCAS II mounted on a curved

ground plane. The simulated structures are shown in Figure 5.1.* The

simulated results will be compared with those computed by the aircraft

code. The aircraft used for this study was the Boeing 737 as shown in

Figure 5.2. The computer model of the Boeing 737 and its input data set

are shown in Figure 5.3 and Table 5.1, respectively. Furthermore, it is

also necessary to define the geometry of the simulated patterns as shown

in Figure 5.4. The 737 was chosen because its structure is relatively

simple, and the simulated results agree well with the measured data.

*Note: For the convience of the reader,all figures and tables referred
to in Chapter V have been grouped together at the end of the
chapter.
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B. PATTERNS FROM A CURVED GROUND PLANE

Before making any comparisons, the success of the curved ground

plane program must be verified. With an infinite radius of curvature,

the curved ground plane results should be the same as those of a flat

ground plane. For this purpose, the element patterns and the monopulse

characteristic curves for the TCAS II mounted on a curved and flat

ground are shown in Figures 5.5 and 5.6. The corresponding sum and

difference patterns are shown in Figures 5.7 and 5.8. Comparing these

patterns, one should observe that the curved ground plane patterns agree

very well with those for the flat one. Note that the flat ground plane

results have been verified by comparisons with previously published

results.

If the sum and difference beams of a TCAS II on a flat ground plane

are rotated clockwise by 90 degrees, the monopulse curve in each case is

found to be unchanged as shown in Figure 5.9. Thus, it can be concluded

that for the same elevation angle, the Butler Matrix will not affect the

monopulse characteristic curves even though the beams are steered in

different directions. If the monopulse curves change when the beam

direction changes, it must be due to the curvature of the surface.

Next, the curved ground plane program is checked with the aircraft

code when the surface radius of curvature is finite. The line-of-sight

signal from the TCAS II array mounted on a curved ground plane should be

similar to the line-of-sight signal when the TCAS II array is mounted on

a long ellipsoid as illustrated in Figure 5.10. The input data for this

ellipsoid is shown in Table 5.2. The sum and difference patterns for
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each case are illustrated in Figure 5.11 and the corresponding monopulse

characteristic curves are shown in Figure 5.12. Comparing the patterns

between the two cases, it can be seen that the simulated results agree

well with those using the aircraft code. Note that only the aircraft

fuselage is present in these results.

There are still more questions that need to be answered. First, if

the curvature of a curved ground plane is set equal to the curvature of

an aircraft at the TCAS II location, then will the curved ground plane

accurately simulate the system mounted on the fuselage? Next, if the

diffracted field is also included in the curved ground plane, how well

does the curved ground plane model simulate the fuselage in terms of the

resulting patterns? To answer the first question, it is necessary to

compare the monopulse curves for an aircraft mounted system with that of

a curved ground plane with the same curvature. First, only the source

term is used to generate the monopulse characteristic curve of the

curved ground plane as illustrated in Figure 5.12. It can be seen that

they agree very well. The corresponding sum and difference patterns

also agree with each other as shown in Figure 5.11. Thus, it can be

concluded that if only the source term is considered, a curved ground

plane can be used to model the fuselage of an aircraft with the same

curvature.

To answer the second question, the total field of a curved ground

plane, that is the sum of the incident and edge diffracted fields, needs

to be compared with the total field of the fuselage of a Boeing 737,

that is the incident and surface diffracted fields. Figure 5.13 shows
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the element patterns for the two cases. The sum and difference patterns

and also their corresponding monopulse characteristic curves at

different beam positions are shown in Figures 5.14 to 5.23. Comparing

the curves for the curved ground plane versus the Boeing 737 fuselage,

it can be concluded that the edge diffracted field included in the

curved ground plane solution causes a slight error in the monopulse

curves if the curved ground plane is used to model the fuselage of a

Boeing 737. However, this error is small compared to the error

introduced by the other structures associated with a Boeing 737 as will

be shown next. Before leaving this section, it is important to note

that this curved ground plane solution is valid only for a certain range

of elevation angles as will be discussed in section D.

C. PATTERNS OF A BOEING 737 MODEL

The OSU aircraft code is used to study the radiation patterns of

the TCAS II system. Ideally, the shape of the the sum and difference

beams will not change as the array is scanned around in the azimuth

plane. However, the fuselage, wings, tail and other structures will

distort the antenna patterns; consequently, the performance of the

monopulse receiver will be affected. Thus, it is important to study the

structural effects of an aircraft on the radiation patterns of a TCAS

II. References [19] and [20] give detailed results for this issue.

To examine the structural effects of a Boeing 737, Figures 5.24 to

5.38 show the sum and difference patterns and also the corresponding

monopulse characteristic curves for the following cases:
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(a) a complete Boeing 737,

(b) a 2-ft curved ground plane with a curvature of 6-ft, and

(c) fuselage only of a Roeing 737.

Comparing the monopulse characteristic curves for the three cases, it is

found that (b) and (c) can be used to model (a) moderately well if the

beam position is not near the tail section. However, when the beam

positions approach the tail section, the aircraft cannot be modeled by a

curved ground plane. The most severely affected region is in the

direction of the tail. The large distortions in the patterns are caused

by shadowing of the vertical stabilizer.

There is one more observation to make. How does a monopulse curve

change with elevation angle? For a fixed beam position, the monopulse

curves spread to the same extent for a flat or a curved ground plane as

shown in Figures 5.39 to 5.41. As shown in Figure 5.42, the monopulse

curve changes quite dramatically for all beam positions and elevation
o o

angles between 20 and 40 . The change was not due to the elevation

angle changing based on the results shown in Figures 5.40 to 5.42. The

major variation of the monopulse curve is due to the beam position as

verified by the data shown in Figure 5.43. This verifies the need for a

curved ground plane and the need for a lookup table associated with each

beam position.

D. LIMITATIONS OF THE SIMULATION

This curved ground plane program only works for a particular range

of elevation angles. At the frequency of 1.09 GHz, the program works
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only when the elevation angle is between 18° and 75°. Perhaps a

combination of UTD and some other techniques need to be used for a

complete simulation. When the elevation angle is larger than 75°, there

is a sudden increase in the number of diffraction points which causes

the diffracted field to be discontinuous; i.e., a caustic. When the

elevation angle is lower than 18°, the diffracted field is blocked by

the ground plane which once again causes a discontinous diffracted

field. Also, it should be noted that the curved ground plane solution

used here is not an exact solution because higher order terms such as

double diffraction are not included. To verify these results, measured

data should be taken and compared with the present findings.

57



TABLE 5.1

INPUT DATA FOR TCAS II
AIRCRAFT CODE: ELLIPSOID VERSION

ON:DJCflES
3
FQ: 1.06 (2C
1,1.06,1.
K: BOEING 737
77.,74.,830.,308.56
T
O.,0.,70.
S3: ELEMENT 1
2.64,66.464
2
1.39,-45.
O.,0.,0.,2.78,3
l.,-45.
1.39,135.
O.,0.,0., 2.78,3
.698,45.
Po: RIGHT WINS
4,T
1.,75.,67.952
1.,536.93,316.14
1.,536.93,379.86
1.,75.,240.26
PG: LEFT WINS
4,T
1., -75., 240.26
1.,-536.93,379.86
l.r -536.93,316.14
1.,-75.,67.952
PG: TAIL
4,T
77.,8.25,618.55
284.147,8.25,819.056
284.147,0.,683.696
77.,0.,4 83.19
F3: TAIL
4,T
77.,0., 4 83.19
284.147,0.,683.696
284.147,-8.25,819.056
77.,-8.25,618.55

BO:
T
PP: POLAR PLOT IN IB
P .
1,1.5,3
PD: AZMJOH PLANE
90.,0.,90.
0,360,1
T, 1000000.
EX:
86: ELEMENT 2
3.73,70.
2
1.39,0.
O.,0.,0. ,2.78,3
l.,-45.
1.39,180.
O.,0.,0.,2.78,3
.698,45.

EX:
86: ELEMENT 3
2.64,73.536
2
1.39,45.
O.,0.,0., 2.78,3

1.39,225.
O.,0.,0., 2.78,3
.698,45.
EX:
86: ELEMENT 4
0./75.
2
1.39,90.
O.,0.,0., 2.78,3

EX:
86: ELEMENT 5
-2.64,73.536
2
1.39,135.
O.,0.,0.,2.78,3

1.39, -45.
O.,0.,0. ,2.78,3
.698,45.
EX:
86: ELEMENT 6
-3.73,70.
2
1.39,180.
O.,0.,0., 2.78,3

1.39,270.
O.,0.,0., 2.78,3
.698,45.

1.39,0.
O.,0.,0., 2.78,3
.698,45.
EX:
86: ELEMENT 7
-2.64,66.464
2
1.39,225.
O.,0.,0., 2.78,3
l.,-45.
1.39,45.
O.,0.,0., 2.78,3
.698,45.
EX:
86: ELEMENT 8
0.,65.
2
1.39,270.
O.,0.,0., 2.78,3
l.,-45.
1.39,90.
O.,0.,0., 2.78,3
.698,45.
EX:
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• sA MONOPOLE

ELEMENT

(a) A TCAS II mounted on a 2-foot radius curved ground
plane with a curvature of 6-feet.

NOSE

(b) A TCAS II mounted on a flat ground plane.

Figure 5.1. TCAS II mounted on a curved and a flat ground plane.
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(o) SIDE VIEW

(b) FRONT VIEW

(c) TOP VIEW

Figure 5.2. Boeing 737 aircraft,
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TCASH
ARRAY LOCATION

(o) SIDE VIEW

(b) FRONT VIEW

TCAS 1C
ARRAY LOCATION

(c) TOP VIEW

Figure 5.3. Computer-simulated model of the Boeing 737,
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Azimuth Conical Pattern Angle = 6

Elevation Angle = 90°-9

Beam Position = a

Figure 5.4. Coordinate system for azimuth conical pattern cuts.
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NOSE

Flat Ground Plane

Curved ground plane
with radius of
curvature of 10,000".\

TAIL

(a) Element patterns.

Radius of disc = 24"

Elevation angle = 20°

Frequency =1.09 GHz

Element #8

CD ..
Oo

CONICRL PHTTERN HNCLE

BERH POSITION

70

0

-20. -IS. -10. -5. 0. 5. 10.
RNGLE

15. 20. 25.

(b) Monopulse characteristics.

Figure 5.5. Comparison of element patterns and monopulse
characteristics for a curved and a flat ground plane.
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NOSE

Flat Ground Plane

Curved ground plane
with radius of
curvature of 10,000".

Radius of disc = 24"

Elevation angle = 20C

Frequency =1.09 GHz

Element #2

TAIL

(a) Element patterns,

CD ..

CONICflL PRTTERN f lNGLE

BEflM POSIT ION

70

90

-30. 0. 5.
RNGLE

-15. -10. -5. 0. 5. 10. 15.

(b) Monopulse characteristics.

20. 25.

Figure 5.6. Comparison of element patterns and monopulse
characteristic for a curved and a flat ground plane.
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MSE K03E

THIL TR1L

Figure 5.7. The sum and difference patterns corresponding to
Figure 5.5.

NOSE
HOSE

TAIL
TRIL

Figure 5.8. The sum and difference patterns corresponding to
Figure 5.6.
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CD _
a o

CONlCflL PflTTERN HNGLE

BEHH POSITION

70

-20. -15. -10. -5. 0.
HNGLE

5. 10. 15. 20. 25.

Figure 5.9. Same monopulse characteristic curve when beam positions
are 0°, 90°, 180°, and 270° for a flat ground plane.

TCASn LOCATION

Figure 5.10. The simulated structure of a long ellipsoid. The source
field of this structure should be close to the source
field of a curved disc with a curvature of 72".
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TABLE 5.2

INPUT DATA FOR A LONG ELLIPSOID

UNrlNCHES
3
FQ: 1.09 GHZ
1,1.09,1.
FG:
72..72.,1000.,1000.
T
O.,0.,0.
BO:
T
PP: POLAR PLOT IN EB
F
1,1.5,3
PD: AZIMUTH FLANE
90..0./70.
0,360,1
T,1000000.
SG: ELEMENT 1
2.813,-3.536
2
1.39,-45.
O.,0.,0.,2.78,3
l.,-45.
1.39,135.
O.,0.,0.,2.78,3
.698,45.
EX:
SG: ELEMENT 2
3.979,0.
2
1.39,0.
O.,0.,0.,2.78,3
l.,-45.
1.39,180.
O.,0.,0.,2.78,3
.698,45.
EX:

SG: ELEMENT 3
2.813,3.536
2
1.39,45.
O.,0.,0.,2.78,3
l.,-45.
1.39,225.
O.,0.,0.,2.78,3
.698,45.
EX:
SG: ELEMENT 4
0.,5.
2
1.39,90.
O.,0.,0.,2.78,3
l.,-45.
1.39,270.
O.,0.,0.,2.78,3
.698,45.
EX:
SG: ELEMENT 5
-2.813,3.536
2
1.39,135.
O.,0.,0.,2.78,3
l.,-45.
1.39,-45.
O.,0.,0.,2.78,3
.698,45.
EX:

' SG: ELEMENT 6
-3.979.0.
2
1.39,180.
O.,0.,0., 2.78,3
l.,-45.
1.39,0.
O.,0.,0.,2.78,3
.698,45.
EX:
SG: ELEMENT 7
-2.813 ,-3 .536
2
1.39,225.
O.,0.,0., 2.78,3
l.,-45.
1.39,45.
O.,0.,0., 2.78,3
.698,45.
EX:
SG: ELEMENT 8

1.39,270.
O.,0.,0.,2.78,3
l.,-45.
1.39,90.
O.,0.,0., 2.78,3
.698,45.
EX:
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NOSE

TOIL

(a) Sum patterns

Elevation angle = 20°

Frequency =1.09 GHz

NOSE

TAIL

Source field from a
curved disc with a
curvature of 72"

Source field from
a long ellopsoid

Source field from
the fuselage of a
Boeing 737

(b) Difference patterns

Figure 5.11. Comparison of sum and difference patterns,
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IM

ID

CON1CRL PATTERN RNCLE

BERN POSITION

20. 25.

(a) Monopulse characteristic curves when beam position is 0°

CONICRL PRTTERN RNGLE

BERN POSITION

70

90

.
Qo

-20. -15. -10. -5. 0. 5.
RNGLE

10. 15. 20. 25.

(b) Monopulse characteristic curves when beam position is
90°.

Figure 5.12. Comparison of monopulse characteristic curves referring
to the three different cases in the last figure.
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NOSE NOSE

TfllL

(a) Element #8

NOSE

TAIL

Element pattern of
a curved disc

Element pattern of
the fuselage of a
Boeing 737

Frequency =1.09 GHz

Elevation = 20°

(c) Element #2

Figure 5.13. Element patterns of a curved disc and the fuselage of a
Boeing 737.
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NOSE

TAIL

(a) Sum patterns

NDSE

TfilL

Curved disc

Fuselage of
a Boeing 737

Frequency =1.09 GHz

Elevation = 20°

(b) Difference patterns

Figure 5.14. Sum and difference patterns of a curved disc and the
fuselage of a Boeing 737 when the beam position is 0°.
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Frequency =1.09 GHz

(a) Fuselage of a Boeing 737

(b) 2-foot radius curved disc
with a curvature of 6-feet

03 .
Oo

CONICHL PHTTERN f lNGLE

BEflM POSIT ION

70

0

(a)

r
-20. -15. -10. -5 0. 5.

flNGLE
10 15. 20 25

Figure 5.15. The monopulse curve corresponding to Figure 5.14,
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NOSE

TAIL

(a) Sum patterns

Curved disc

Fuselage of
a Boeing 737

NOSE
Frequency =1.09 GHz

Elevation = 20°

Tflll

(b) Difference patterns

Figure 5.16. Sum and difference patterns of a curved disc and the
fuselage of a Boeing 737 when the beam position is 45°,
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Frequency = 1.09 GHz

(a) Fuselage of a Boeing 737

(b) 2-foot radius curved disc
with a curvature of 6-feet

CO .
O o

CONICRL PfUTERN flNCLE

BEHM POSITION

70

45

-15. -10. -5. 0. 5.
flNGLE

10. 15. 20.

Figure 5.17. The monopulse curve corresponding to Figure 5.16,
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NOSE

TAIL

(a) Sum patterns

NOSE

Curved disc

Fuselage of
a Boeing 737

Frequency =1.09 GHz

Elevation = 20°

TAIL

(b) Difference patterns

Figure 5.18. Sum and difference patterns of a curved disc and the
fuselage of a Boeing 737 when the beam position is 90C
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Frequency = 1.09 GHz

(a) Fuselage of a Boeing 737

(b) 2-foot radius curved disc
with a curvature of 6-feet

CD ..
O o

CONICflL PHTTERN flNGLE

BEflM POSITION

70

90

-20. -15. -10. -5. 0. 5.
flNGLE

10. 15. 20. 25.

Figure 5.19. The monopulse curve corresponding to Figure 5.18.
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NOSE

TAIL

(a) Sum patterns

NOSE

TAIL

Curved disc

Fuselage of
a Boeing 737

Frequency = 1.09 GHz

Elevation = 20°

(b) Difference patterns

Figure 5.20. Sum and difference patterns of a curved disc and the
fuselage of a Boeing 737 when the beam position is 135*
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Frequency =1.09 GHz

(a) Fuselage of a Boeing 737

(b) 2-foot radius curved disc
with a curvature of 6-feet

EQ ..
O o

CONlCflL PRTTERN HNCLE

BEHM POSITION

70

135

-20. -15. -10. -5. 0.
RNGLE

5. 10. 15. 20. 25

Figure 5.21. The monopulse curve corresponding to Figure 5.20.
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NOSE

TAIL

(a) Sum patterns

NOSE

Curved disc

Fuselage of
a Boeing 737

Frequency = 1.09 GHz

Elevation = 20°

TAIL

(b) Difference patterns

Figure 5.22. Sum and difference patterns of a curved disc and the
fuselage of a Boeing 737 when the beam position is 180°,
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Frequency =1.09 GHz

(a) Fuselage of a Boeing 737

(b) 2-foot radius curved disc
with a curvature of 6-feet

CONICRL PHTTERN HNCLE

BERN POSITION

70

-180

.
Oo

-20. -15. -10. -5. 0. 5.
flNGLE

10. 15. 20. 25.

Figure 5.23. The monopulse curve corresponding to Figure 5.22,
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Frequency = 1.06 GHz

(SCALE: EACH OIVISION-100B)

NOSE

LEFT
WING

RIGHTLf fT
WING "ING

TfllL

(a) a Boeing 737

RIGHT
MING

TAIL

(b) a curved ground plane

NOSE

LEFT
HING

RIGHT
WING

TfllL

(c) the fuselage of a Boeing 737

Figure 5.24. Sum patterns of a Boeing 737, a curved ground plane and
the fuselage of a Boeing 737.
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Frequency =1.06 GHz

(SCflLE: EflCH DIVISION=10DB)

NOSE NOSE

LEFT
WING
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MING WING

RIGHT
MING

TfllL

(a) a Boeing 737

TfllL

(b) a curved ground plane

NOSE

LEFT
MING

RIGHT
MING

TfllL

(c) the fuselage of a Boeing 737

Figure 5.25. Difference patterns of a Boeing 737, a curved ground plane
and the fuselage of a Boeing 737.
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Frequency = 1.06 GHz

CD ..
Oo

CONICRL PRTTERN ANGLE

BERN POSITION

70

0

(a.c)

-20. -15. -10. -5. 0. 5.
flNGLE

to. is. 20. 25.

(a) Boeing 737

(b) 2-foot radius curved disc
with a curvature of 6-feet

(c) Fuselage of a Boeing 737

Figure 5.26. The corresponding monopulse curves.
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Frequency =1.06 GHz

(SCflLE: EflCH D I V I S I O N - 1 0 0 B )
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(a) a Boeing 737 00 a curved ground plane

NOSE

LEFT
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Tf l lL

(c) the fuselage of a Boeing 737

and the fuselage of a Boeing
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Frequency = 1.06 GHz

00 ..
Oo

CONICRL PHTTERN ANGLE

BERN POSITION

70

115

(o.c)

-20. -15. -10. -5. 0.
RNGLE

5. 10. 15. 20. 25.

(a) Boeing 737

(b) 2-foot radius curved disc
with a curvature of 6-feet

(c) Fuselage of a Boeing 737

Figure 5.29. The corresponding monopulse curves.
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(a) a Boeing 737 (b) a curved ground plane
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TfllL

(c) the fuselage of a Boeing 737

Figure 5.30. Sum patterns of a Boeing 737, a curved ground plane and
the fuselage of a Boeing 737.
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Frequency = 1.06 GHz

(SCflLE: EflCH OIVISION=100B)
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(a) a Boeing 737

TfllL

(b) a curved ground plane
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(c) the fuselage of a Boeing 737

Figure 5.31. Difference patterns of a Boeing 737, a curved ground plane
and the fuselage of a Boeing 737.
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Frequency =1.06 GHz

CQN1CRL PATTERN ANGLE

BEAM POSITION

20. 25.

(a) Boeing 737

(b) 2-foot radius curved disc
with a curvature of 6-feet

(c) Fuselage of a Boeing 737

Figure 5.32. The corresponding monopulse curves.
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Frequency = 1.06 GHz
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(c) the fuselage of a Boeing 737

Figure 5.33. Sum patterns of a Boeing 737, a curved ground plane and
the fuselage of a Boeing 737.
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Figure 5.34,

mrved ground plane
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Frequency =1.06 GHz

CONICRL PHTTERN HNGLE

BERM POSITION

20. 25.

(a) A Boeing 737

(b) 2-foot radius curved disc
with a curvature of 6-feet

(c) Fuselage of a Boeing 737

Figure 5.35. The corresponding monopulse curves.
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Frequency =1.06 GHz
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(a) a Boeing 737
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(c) the fuselage of a Boeing 737

Figure 5.36. Sum patterns of a Boeing 737, a curved ground plane and
the fuselage of a Boeing 737.
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Frequency =1.06 GHz

NOSE

LEFT
MING

TfllL

NOSE

TfllL

RIGHT
MING

(a) a Boeing 737 (b) a curved ground plane

NOSE

LEFT
MING

RIGHT
MING

TfllL
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Figure 5.37. Difference patterns of a Boeing 737, a curved ground plane
and the fuselage of a Boeing 737.
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Frequency = 1.06 GHz
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(a) Boeing 737

(b) 2-foot radius curved disc
with a curvature of 6-feet

(c) Fuselage of a Boeing 737

Figure 5.38. The corresponding monopulse curves.
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Figure 5.39. All the monopulse curves of a flat ground plane
when the elevation angle varies from 20° to 40° and
the beam position changes.
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Figure 5.40. The monopulse curves of a curved ground plane with a
curvature of 6-feet when the beam position is 90° and
the elevation angle varies from 20° to 40°.
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Figure 5.41. The monopulse curves of a curved ground plane with a
curvature of 6-feet when the beam position is 0° and
the elevation angle varies from 20° to 40°.
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Figure 5.42. The monopulse curves of a curved ground plane with a
curvature of 6-feet when the elevation angle varies
from 20° to 40° and the beam position changes.
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Figure 5.43. The monopulse curves of a curved ground plane with a
curvature of 6-feet when the elevation angle is 30°
and the beam position changes.
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CHAPTER VI

CONCLUSIONS

A curved ground plane can be used to model the fuselage of an

aircraft with a slight error in the monopulse characteristic curves.

This error is small compared to the error caused by the appendages found

on an aircraft. This is particularly true when the beam position is

near the tail of an aircraft where the monopulse characteristic results

are severely distorted by the vertical stabilizer. To reduce such an

undesirable scattering effect, Reference [20] points out that one

solution is to move the TCAS II location as far from the vertical

stabilizer as possible.

Some other observations made in the previous chapter include the

followings:

(a) For a flat ground plane, the monopulse characteristic curves

do not depend on beam positions due to the symmetry of the

structure.

(b) For a curved ground plane, the surface curvature affects the

monopulse characteristic curves such that they vary

significantly with beam position. This verifies the need for

a lookup table for each azimuth beam position.

(c) For a fixed beam position, the monopulse characteristic curves

do not change significantly with elevation angle provided that

the azimuth look angle for each beam is kept small; i.e., less

than ±25°.
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Based on the above observations, it can be concluded that no matter

where the TCAS II is placed on the fuselage, variations in the monopulse

characteristic curves due to elevation angle changes are rather weak in

terms of the fuselage curvature, but they can be dependent on the

aircraft structure such as the vertical stabilizer. The choice of a

flatter surface does not seem to improve the above condition. However,

since major errors come from the scattering of the tail, the best

location of the TCAS II is still to move it as far from the vertical

stabilizer as possible as suggested by Grandchamp [20il.

As a last remark, the curved ground plane can be considered as a

good simulation model for the fuselage of an aircraft but may not be

good enough to model a whole aircraft. Finally, it should be noted that

all the conclusions made above are only valid when the elevation angles

are within the range of the curved ground plane solution. Thus,

measured results are needed to verify these conclusions.
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