4,375 research outputs found
Applications of atomic ensembles in distributed quantum computing
Thesis chapter. The fragility of quantum information is a fundamental constraint faced by anyone trying to build a quantum computer. A truly useful and powerful quantum computer has to be a robust and scalable machine. In the case of many qubits which may interact with the environment and their neighbors, protection against decoherence becomes quite a challenging task. The scalability and decoherence issues are the main difficulties addressed by the distributed model of quantum computation. A distributed quantum computer consists of a large quantum network of distant nodes - stationary qubits which communicate via flying qubits. Quantum information can be transferred, stored, processed and retrieved in decoherence-free fashion by nodes of a quantum network realized by an atomic medium - an atomic quantum memory. Atomic quantum memories have been developed and demonstrated experimentally in recent years. With the help of linear optics and laser pulses, one is able to manipulate quantum information stored inside an atomic quantum memory by means of electromagnetically induced transparency and associated propagation phenomena. Any quantum computation or communication necessarily involves entanglement. Therefore, one must be able to entangle distant nodes of a distributed network. In this article, we focus on the probabilistic entanglement generation procedures such as well-known DLCZ protocol. We also demonstrate theoretically a scheme based on atomic ensembles and the dipole blockade mechanism for generation of inherently distributed quantum states so-called cluster states. In the protocol, atomic ensembles serve as single qubit systems. Hence, we review single-qubit operations on qubit defined as collective states of atomic ensemble. Our entangling protocol requires nearly identical single-photon sources, one ultra-cold ensemble per physical qubit, and regular photodetectors. The general entangling procedure is presented, as well as a procedure that generates in a single step Q-qubit GHZ states with success probability p(success) similar to eta(Q/2), where eta is the combined detection and source efficiency. This is signifcantly more efficient than any known robust probabilistic entangling operation. The GHZ states form the basic building block for universal cluster states, a resource for the one-way quantum computer
Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b
(Abridged) In recent years, ground-based high-resolution spectroscopy has
become a powerful tool for investigating exoplanet atmospheres. It allows the
robust identification of molecular species, and it can be applied to both
transiting and non-transiting planets. Radial-velocity measurements of the star
HD 179949 indicate the presence of a giant planet companion in a close-in
orbit. Here we present the analysis of spectra of the system at 2.3 micron,
obtained at a resolution of R~100,000, during three nights of observations with
CRIRES at the VLT. We targeted the system while the exoplanet was near superior
conjunction, aiming to detect the planet's thermal spectrum and the radial
component of its orbital velocity. We detect molecular absorption from carbon
monoxide and water vapor with a combined S/N of 6.3, at a projected planet
orbital velocity of K_P = (142.8 +- 3.4) km/s, which translates into a planet
mass of M_P = (0.98 +- 0.04) Jupiter masses, and an orbital inclination of i =
(67.7 +- 4.3) degrees, using the known stellar radial velocity and stellar
mass. The detection of absorption features rather than emission means that,
despite being highly irradiated, HD 179949 b does not have an atmospheric
temperature inversion in the probed range of pressures and temperatures. Since
the host star is active (R_HK > -4.9), this is in line with the hypothesis that
stellar activity damps the onset of thermal inversion layers owing to UV flux
photo-dissociating high-altitude, optical absorbers. Finally, our analysis
favors an oxygen-rich atmosphere for HD 179949 b, although a carbon-rich planet
cannot be statistically ruled out based on these data alone.Comment: 10 pages, 9 figures. Accepted for publication in Astronomy and
Astrophysic
Diabetic Mastopathy: A Case Report and Literature Review
Diabetic mastopathy is a rare fibroinflammatory breast disease characterized by lymphocytic lobulitis, ductitis, and perivasculitis with stromal fibrosis. This lesion often presents as a discretely palpable uni- or bilateral mass in long-standing type I diabetes and other autoimmune diseases. We report a case of insulin-dependent diabetic mastopathy, which presented clinically as an indeterminate breast lump suspicious for malignancy. The patient is a 36-year-old woman who had type 1 insulin-dependent diabetes mellitus. Mammography and ultrasonography raised a suspicion of malignancy, and an excisional biopsy was performed. A previous biopsy had shown no evidence of malignancy. Histopathological examination now showed dense keloid-like stromal fibrosis with epithelioid-like and spindly myofibroblasts and a characteristic lymphocytic infiltration around blood vessels in and around lobules and ducts, features consistent with diabetic mastopathy. The literature is briefly reviewed
Exoplanet atmospheres with GIANO. I. Water in the transmission spectrum of HD 189733b
High-resolution spectroscopy (R 20,000) at near-infrared wavelengths
can be used to investigate the composition, structure, and circulation patterns
of exoplanet atmospheres. However, up to now it has been the exclusive dominion
of the biggest telescope facilities on the ground, due to the large amount of
photons necessary to measure a signal in high-dispersion spectra. Here we show
that spectrographs with a novel design - in particular a large spectral range -
can open exoplanet characterisation to smaller telescope facilities too. We aim
to demonstrate the concept on a series of spectra of the exoplanet HD 189733 b
taken at the Telescopio Nazionale Galileo with the near-infrared spectrograph
GIANO during two transits of the planet. In contrast to absorption in the
Earth's atmosphere (telluric absorption), the planet transmission spectrum
shifts in radial velocity during transit due to the changing orbital motion of
the planet. This allows us to remove the telluric spectrum while preserving the
signal of the exoplanet. The latter is then extracted by cross-correlating the
residual spectra with template models of the planet atmosphere computed through
line-by-line radiative transfer calculations, and containing molecular
absorption lines from water and methane. By combining the signal of many
thousands of planet molecular lines, we confirm the presence of water vapour in
the atmosphere of HD 189733 b at the 5.5- level. This signal was
measured only in the first of the two observing nights. By injecting and
retrieving artificial signals, we show that the non-detection on the second
night is likely due to an inferior quality of the data. The measured strength
of the planet transmission spectrum is fully consistent with past CRIRES
observations at the VLT, excluding a strong variability in the depth of
molecular absorption lines.Comment: 10 pages, 8 figures. Accepted for publication in Astronomy &
Astrophysics. v2 includes language editin
The GROUSE project III: Ks-band observations of the thermal emission from WASP-33b
In recent years, day-side emission from about a dozen hot Jupiters has been
detected through ground-based secondary eclipse observations in the
near-infrared. These near-infrared observations are vital for determining the
energy budgets of hot Jupiters, since they probe the planet's spectral energy
distribution near its peak. The aim of this work is to measure the Ks-band
secondary eclipse depth of WASP-33b, the first planet discovered to transit an
A-type star. This planet receives the highest level of irradiation of all
transiting planets discovered to date. Furthermore, its host-star shows
pulsations and is classified as a low-amplitude delta-Scuti. As part of our
GROUnd-based Secondary Eclipse (GROUSE) project we have obtained observations
of two separate secondary eclipses of WASP-33b in the Ks-band using the LIRIS
instrument on the William Herschel Telescope (WHT). The telescope was
significantly defocused to avoid saturation of the detector for this bright
star (K~7.5). To increase the stability and the cadence of the observations,
they were performed in staring mode. We collected a total of 5100 and 6900
frames for the first and the second night respectively, both with an average
cadence of 3.3 seconds. On the second night the eclipse is detected at the
12-sigma level, with a measured eclipse depth of 0.244+0.027-0.020 %. This
eclipse depth corresponds to a brightness temperature of 3270+115-160 K. The
measured brightness temperature on the second night is consistent with the
expected equilibrium temperature for a planet with a very low albedo and a
rapid re-radiation of the absorbed stellar light. For the other night the short
out-of-eclipse baseline prevents good corrections for the stellar pulsations
and systematic effects, which makes this dataset unreliable for eclipse depth
measurements. This demonstrates the need of getting a sufficient out-of-eclipse
baseline.Comment: 12 pages, 10 figures. Accepted for publication in Astronomy and
Astrophysic
From Linear Optical Quantum Computing to Heisenberg-Limited Interferometry
The working principles of linear optical quantum computing are based on
photodetection, namely, projective measurements. The use of photodetection can
provide efficient nonlinear interactions between photons at the single-photon
level, which is technically problematic otherwise. We report an application of
such a technique to prepare quantum correlations as an important resource for
Heisenberg-limited optical interferometry, where the sensitivity of phase
measurements can be improved beyond the usual shot-noise limit. Furthermore,
using such nonlinearities, optical quantum nondemolition measurements can now
be carried out at the single-photon level.Comment: 10 pages, 5 figures; Submitted to a Special Issue of J. Opt. B on
"Fluctuations and Noise in Photonics and Quantum Optics" (Herman Haus
Memorial Issue); v2: minor change
The apparent roughness of a sand surface blown by wind from an analytical model of saltation
We present an analytical model of aeolian sand transport. The model
quantifies the momentum transfer from the wind to the transported sand by
providing expressions for the thickness of the saltation layer and the apparent
surface roughness. These expressions are derived from basic physical principles
and a small number of assumptions. The model further predicts the sand
transport rate (mass flux) and the impact threshold (the smallest value of the
wind shear velocity at which saltation can be sustained). We show that, in
contrast to previous studies, the present model's predictions are in very good
agreement with a range of experiments, as well as with numerical simulations of
aeolian saltation. Because of its physical basis, we anticipate that our model
will find application in studies of aeolian sand transport on both Earth and
Mars
Electrostatics in wind-blown sand
Wind-blown sand, or "saltation," is an important geological process, and the
primary source of atmospheric dust aerosols. Significant discrepancies exist
between classical saltation theory and measurements. We show here that these
discrepancies can be resolved by the inclusion of sand electrification in a
physically based saltation model. Indeed, we find that electric forces enhance
the concentration of saltating particles and cause them to travel closer to the
surface, in agreement with measurements. Our results thus indicate that sand
electrification plays an important role in saltation.Comment: 4 journal pages, 5 figures, and supplementary material. Article is in
press at PR
Beta-carotene supplementation in smokers reduces the frequency of micronuclei in sputum.
beta-carotene has been hypothesised to reduce lung cancer risk. We studied the effect of 14 weeks of beta-carotene supplementation (20 mg d-1) on the frequency of micronuclei in sputum in 114 heavy smokers in a double-blind trial. Micronuclei reflect DNA damage in exfoliated cells and may thus provide a marker of early-stage carcinogenesis. Pre-treatment blood levels of cotinine, beta-carotene, retinol and vitamins C and E were similar in the placebo group (n = 61) and the treatment group (n = 53). Plasma beta-carotene levels increased 13-fold in the treatment group during intervention. Initial micronuclei counts (per 3,000 cells) were higher in the treatment group than in the placebo group (5.0 vs 4.0, P < 0.05). During intervention, the treatment group showed a 47% decrease, whereas the placebo group showed a non-significant decrease (16%). After adjustment for the initial levels, the treatment group had 27% lower micronuclei counts than the placebo group at the end of the trial (95% CI: 9-41%). These results indicate that beta-carotene may reduce lung cancer risk in man by preventing DNA damage in early-stage carcinogenesis
Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 microns
We report a 4.8 sigma detection of water absorption features in the day side
spectrum of the hot Jupiter HD 189733 b. We used high-resolution (R~100,000)
spectra taken at 3.2 microns with CRIRES on the VLT to trace the
radial-velocity shift of the water features in the planet's day side atmosphere
during 5 h of its 2.2 d orbit as it approached secondary eclipse. Despite
considerable telluric contamination in this wavelength regime, we detect the
signal within our uncertainties at the expected combination of systemic
velocity (Vsys=-3 +5-6 km/s) and planet orbital velocity (Kp=154 +14-10 km/s),
and determine a H2O line contrast ratio of (1.3+/-0.2)x10^-3 with respect to
the stellar continuum. We find no evidence of significant absorption or
emission from other carbon-bearing molecules, such as methane, although we do
note a marginal increase in the significance of our detection to 5.1 sigma with
the inclusion of carbon dioxide in our template spectrum. This result
demonstrates that ground-based, high-resolution spectroscopy is suited to
finding not just simple molecules like CO, but also to more complex molecules
like H2O even in highly telluric contaminated regions of the Earth's
transmission spectrum. It is a powerful tool that can be used for conducting an
immediate census of the carbon- and oxygen-bearing molecules in the atmospheres
of giant planets, and will potentially allow the formation and migration
history of these planets to be constrained by the measurement of their
atmospheric C/O ratios.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter
- …