1,775 research outputs found
A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models
We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and development conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangu (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs typically simulate water resources impacts based on a more explicit representation of catchment water resources than that available from the GHM, and the CHMs include river routing. Simulations of average annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global mean temperature from the HadCM3 climate model and (2)a prescribed increase in global-mean temperature of 2oC for seven GCMs to explore response to climate model and structural uncertainty.
We find that differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM, and they are generally larger for indicators of high and low flow. However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are presented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs.This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find, however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evaporation estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme monthly runoff, all of which have implications for future water management issues
An improved expected temperature formula for identifying interplanetary coronal mass ejections
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95056/1/jgra17698.pd
Ion Charge States in Halo CMEs: What can we Learn about the Explosion?
We describe a new modeling approach to develop a more quantitative
understanding of the charge state distributions of the ions of various elements
detected in situ during halo Coronal Mass Ejection (CME) events by the Advanced
Composition Explorer (ACE) satellite. Using a model CME hydrodynamic evolution
based on observations of CMEs propagating in the plane of the sky and on
theoretical models, we integrate time dependent equations for the ionization
balance of various elements to compare with ACE data. We find that plasma in
the CME ``core'' typically requires further heating following filament
eruption, with thermal energy input similar to the kinetic energy input. This
extra heating is presumably the result of post eruptive reconnection. Plasma
corresponding to the CME ``cavity'' is usually not further ionized, since
whether heated or not, the low density gives freeze-in close the the Sun. The
current analysis is limited by ambiguities in the underlying model CME
evolution. Such methods are likely to reach their full potential when applied
to data to be acquired by STEREO when at optimum separation. CME evolution
observed with one spacecraft may be used to interpret CME charge states
detected by the other.Comment: 20 pages, accepted by Ap
Recommended from our members
Intermittent release of transients in the slow solar wind: 2. In situ evidence
In paper 1, we showed that the Heliospheric Imager (HI) instruments on the pair of NASA STEREO spacecraft can be used to image the streamer belt and, in particular, the variability of the slow solar wind which originates near helmet streamers. The observation of intense intermittent transient outflow by HI implies that the corresponding in situ observations of the slow solar wind and corotating interaction regions (CIRs) should contain many signatures of transients. In the present paper, we compare the HI observations with in situ measurements from the STEREO and ACE spacecraft. Analysis of the solar wind ion, magnetic field, and suprathermal electron flux measurements from
the STEREO spacecraft reveals the presence of both closed and partially disconnected interplanetary magnetic field lines permeating the slow solar wind. We predict that one of the transients embedded within the second CIR (CIRâD in paper 1) should impact the nearâEarth ACE spacecraft. ACE measurements confirm the presence of a transient at the time of CIR passage; the transient signature includes helical magnetic fields and bidirectional suprathermal electrons. On the same day, a strahl electron dropout is observed at STEREOâB, correlated with the passage of a high plasma beta structure. Unlike ACE, STEREOâB observes the transient a few hours ahead of the CIR. STEREOâA, STEREOâB, and ACE spacecraft observe very different slow solar wind properties ahead of and during the CIR analyzed in this paper, which we associate with the intermittent release of transients
Acceleration of Solar Wind Ions by Nearby Interplanetary Shocks: Comparison of Monte Carlo Simulations with Ulysses Observations
The most stringent test of theoretical models of the first-order Fermi
mechanism at collisionless astrophysical shocks is a comparison of the
theoretical predictions with observational data on particle populations. Such
comparisons have yielded good agreement between observations at the
quasi-parallel portion of the Earth's bow shock and three theoretical
approaches, including Monte Carlo kinetic simulations. This paper extends such
model testing to the realm of oblique interplanetary shocks: here observations
of proton and alpha particle distributions made by the SWICS ion mass
spectrometer on Ulysses at nearby interplanetary shocks are compared with test
particle Monte Carlo simulation predictions of accelerated populations. The
plasma parameters used in the simulation are obtained from measurements of
solar wind particles and the magnetic field upstream of individual shocks. Good
agreement between downstream spectral measurements and the simulation
predictions are obtained for two shocks by allowing the the ratio of the
mean-free scattering length to the ionic gyroradius, to vary in an optimization
of the fit to the data. Generally small values of this ratio are obtained,
corresponding to the case of strong scattering. The acceleration process
appears to be roughly independent of the mass or charge of the species.Comment: 26 pages, 6 figures, AASTeX format, to appear in the Astrophysical
Journal, February 20, 199
Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane
International audienceWe study the variability of the heliospheric energetic proton-to-helium abundance ratios during different phases of the solar cycle. We use energetic particle, solar wind, and magnetic field data from the Ulysses, ACE and IMP-8 spacecraft to compare the H/He intensity ratio at high heliographic latitudes and in the ecliptic plane. During the first out-of-ecliptic excursion of Ulysses (1992?1996), the HI-SCALE instrument measured corotating energetic particle intensity enhancements characterized by low values ( 10) of the 0.5?1.0 MeV nucleon-1 H/He intensity ratio. During the second out-of-ecliptic excursion of Ulysses (1999?2002), the more frequent occurrence of solar energetic particle events resulted in almost continuously high ( 20) values of the H/He ratio, even at the highest heliolatitudes reached by Ulysses. Comparison with in-ecliptic measurements from an identical instrument on the ACE spacecraft showed similar H/He values at ACE and Ulysses, suggesting a remarkable uniformity of energetic particle intensities in the solar maximum heliosphere at high heliolatitudes and in the ecliptic plane. In-ecliptic observations of the H/He intensity ratio from the IMP-8 spacecraft show variations between solar maximum and solar minimum similar to those observed by Ulysses at high heliographic latitudes. We suggest that the variation of the H/He intensity ratio throughout the solar cycle is due to the different level of transient solar activity, as well as the different structure and duration that corotating solar wind structures have under solar maximum and solar minimum conditions. During solar minimum, the interactions between the two different types of solar wind streams (slow vs. fast) are strong and long-lasting, allowing for a continuous and efficient acceleration of interstellar pickup He +. During solar maximum, transient events of solar origin (characterized by high values of the H/He ratio) are able to globally fill the heliosphere. In addition, during solar maximum, the lack of strong recurrent high-speed solar wind streams, together with the dynamic character of the Sun, lead to weak and short-lived solar wind stream interactions. This results in a less efficient acceleration of pickup He +, and thus a higher value of the H/He intensity ratio
Object-oriented Programming Laws for Annotated Java Programs
Object-oriented programming laws have been proposed in the context of
languages that are not combined with a behavioral interface specification
language (BISL). The strong dependence between source-code and interface
specifications may cause a number of difficulties when transforming programs.
In this paper we introduce a set of programming laws for object-oriented
languages like Java combined with the Java Modeling Language (JML). The set of
laws deals with object-oriented features taking into account their
specifications. Some laws deal only with features of the specification
language. These laws constitute a set of small transformations for the
development of more elaborate ones like refactorings
Characteristics of ion flow in the quiet inner plasma sheet
Abstract
We use AMPTE/IRM and ISEE 2 data to study the properties of the high beta (ÎČi \u3e 0.5) plasma sheet, the inner plasma sheet (IPS). Bursty bulk flows (BBFs) are excised from the two databases, and the average flow pattern in the non-BBF (quiet) IPS is constructed. At local midnight this ensemble-average flow is predominantly duskward; closer to the flanks it is mostly earthward. The flow pattern agrees qualitatively with calculations based on the Tsyganenko [1987] model (T87), where the earthward flow is due to the ensemble-average cross tail electric field and the duskward flow is the diamagnetic drift due to an inward pressure gradient. The IPS is on the average in pressure equilibrium with the lobes. Because of its large variance the average flow does not represent the instantaneous flow field. Case studies also show that the non-BBF flow is highly irregular and inherently unsteady, a reason why earthward convection can avoid a pressure balance inconsistency with the lobes. The ensemble distribution of velocities is a fundamental observable of the quiet plasma sheet flow field
Observation of a Complex Solar Wind Reconnection Exhaust from Spacecraft Separated by over 1800 R E
We analyze Wind, ACE, and STEREO (ST-A and ST-B) plasma and magnetic field data in the vicinity of the heliospheric current sheet (HCS) crossed by all spacecraft between 22:15 UT on 31 March and 01:25 UT on 1 April 2007 corresponding to its observation at ST-A and ST-B, which were separated by over 1800 R E (or over 1200 R E across the Sun â Earth line). Although only Wind and ACE provided good ion flow data in accord with a solar wind magnetic reconnection exhaust at the HCS, the magnetic field bifurcation typical of such exhausts was clearly observed at all spacecraft. They also all observed unambiguous strahl mixing within the exhaust, consistent with the sunward flow deflection observed at Wind and ACE and thus with the formation of closed magnetic field lines within the exhaust with both ends attached to the Sun. The strong dawnward flow deflection in the exhaust is consistent with the exhaust and X-line orientations obtained from minimum variance analysis at each spacecraft so that the X-line is almost along the GSE Z-axis and duskward of all the spacecraft. The observation of strahl mixing in extended and intermittent layers outside the exhaust by ST-A and ST-B is consistent with the formation of electron separatrix layers surrounding the exhaust. This event also provides further evidence that balanced parallel and antiparallel suprathermal electron fluxes are not a necessary condition for identification of closed field lines in the solar wind. In the present case the origin of the imbalance simply is the mixing of strahls of substantially different strengths from a different solar source each side of the HCS. The inferred exhaust orientations and distances of each spacecraft relative to the X-line show that the exhaust was likely nonplanar, following the Parker spiral orientation. Finally, the separatrix layers and exhausts properties at each spacecraft suggest that the magnetic reconnection X-line location and/or reconnection rate were variable in both space and time at such large scales
- âŠ