24 research outputs found

    Amperometric Adhesion Signals of Liposomes, Cells and Droplets

    Get PDF
    Individual soft microparticles (liposomes, living cells and organic droplets) in aqueous media are characterized by their adhesion signals using amperometry at the dropping mercury electrode. We confirmed that the general mechanism established for adhesion of hydrocarbon droplets and cells is valid as well for liposome adhesion within a wide range of surface charge densities. Incidents and shape of adhesion signals in liposome suspensions reflect liposome polydispersity, surface charge density and properties of phospholipid head group. Major distinction in adhesion behavior of liposomes when compared to organic droplets was identified as: (i) different values of critical interfacial tensions of adhesion at the positively and the negatively charged electrode, and (ii) appearance of signals revealing the specific interactions of phospholipid polar head groups with the electrode

    Enantioselective component selection in multicomponent supramolecular gels

    Get PDF
    We investigate a two-component acid-amine gelation system in which chirality plays a vital role. A carboxylic acid based on a second generation l-lysine dendron interacts with chiral amines and subsequently assembles into supramolecular gel fibers. The chirality of the amine controls the assembly of the resulting diastereomeric complexes, even if this chirality is relatively "poor quality". Importantly, the selective incorporation of one enantiomer of an amine over the other into the gel network has been demonstrated, with the R amine that forms complexes which assemble into the most stable gel being primarily selected for incorporation. Thermodynamic control has been proven by forming a gel exclusively with an S amine, allowing the R enantiomer to diffuse through the gel network, and displacing it from the "solidlike" fibers, demonstrating that these gels adapt and evolve in response to chemical stimuli to which they are exposed. Excess amine, which remains unincorporated within the solidlike gel fiber network, can diffuse out and be reacted with an isocyanate, allowing us to quantify the enantioselectivity of component selection but also demonstrating how gels can act as selective reservoirs of potential reagents, releasing them on demand to undergo further reactions; hence, component-selective gel assembly can be coupled with controlled reactivity

    Purification and Characterization of L,(L/D)-aminopeptidase from Guinea Pig Serum

    No full text
    Mammalian sera contain enzymes that catalyze the hydrolytic degradation of peptidoglycans and molecules of related structure and are relevant for the metabolism of peptidoglycans. We now report on a novel L,(L/D)-aminopeptidase found in human and mammalian sera. The enzyme hydrolyses the pentapeptide L-Ala-Diso- Gln-meso-DAP(vNH2)-D-Ala-D-Ala yielding the free L-alanine and the respective tetrapeptide (KM 18 mM). L,(L/D)-aminopeptidase from guinea pig serum was highly purified in four chromatographic steps, up to 700-fold. Molecular weight of the enzyme was estimated by HPLC to be approximately 175,000. The configuration of alanine obtained by hydrolysis of the pentapeptide was determined by oxidation with L-amino acid oxidase. The amino acids sequence in the respective tetrapeptide was deduced from the results of mass spectrometry. The novel L,(L/D)-aminopeptidase also hydrolyzed alanine-4-nitroanilide (KM \ubc 0.6mM) and several peptides comprising L-amino acids. Peptides containing D-amino acid at the amino end and L-Asp-L-Asp were not the substrates for this enzyme. The purified enzyme also exhibited enkephalin degrading activity, hydrolyzing enkephalins comprising L,L- and L,D-peptide bonds. The enzyme was inhibited strongly by metal chelating agents, bestatin and amastatin

    Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity.

    No full text
    For nearly 50 years, the vision of using single molecules in circuits has been seen as providing the ultimate miniaturization of electronic chips. An advanced example of such a molecular electronics chip is presented here, with the important distinction that the molecular circuit elements play the role of general-purpose single-molecule sensors. The device consists of a semiconductor chip with a scalable array architecture. Each array element contains a synthetic molecular wire assembled to span nanoelectrodes in a current monitoring circuit. A central conjugation site is used to attach a single probe molecule that defines the target of the sensor. The chip digitizes the resulting picoamp-scale current-versus-time readout from each sensor element of the array at a rate of 1,000 frames per second. This provides detailed electrical signatures of the single-molecule interactions between the probe and targets present in a solution-phase test sample. This platform is used to measure the interaction kinetics of single molecules, without the use of labels, in a massively parallel fashion. To demonstrate broad applicability, examples are shown for probe molecule binding, including DNA oligos, aptamers, antibodies, and antigens, and the activity of enzymes relevant to diagnostics and sequencing, including a CRISPR/Cas enzyme binding a target DNA, and a DNA polymerase enzyme incorporating nucleotides as it copies a DNA template. All of these applications are accomplished with high sensitivity and resolution, on a manufacturable, scalable, all-electronic semiconductor chip device, thereby bringing the power of modern chips to these diverse areas of biosensing
    corecore