167 research outputs found
Cell adhesion and cortex contractility determine cell patterning in the Drosophila retina
Hayashi and Carthew (Nature 431 [2004], 647) have shown that the packing of
cone cells in the Drosophila retina resembles soap bubble packing, and that
changing E- and N-cadherin expression can change this packing, as well as cell
shape.
The analogy with bubbles suggests that cell packing is driven by surface
minimization. We find that this assumption is insufficient to model the
experimentally observed shapes and packing of the cells based on their cadherin
expression. We then consider a model in which adhesion leads to a surface
increase, balanced by cell cortex contraction. Using the experimentally
observed distributions of E- and N-cadherin, we simulate the packing and cell
shapes in the wildtype eye. Furthermore, by changing only the corresponding
parameters, this model can describe the mutants with different numbers of
cells, or changes in cadherin expression.Comment: revised manuscript; 8 pages, 6 figures; supplementary information not
include
Fibronectin matrix-mediated cohesion suppresses invasion of prostate cancer cells
<p>Abstract</p> <p>Background</p> <p>Invasion is an important early step in the metastatic cascade and is the primary cause of death of prostate cancer patients. In order to invade, cells must detach from the primary tumor. Cell-cell and cell-ECM interactions are important regulators of cohesion - a property previously demonstrated to mediate cell detachment and invasion. The studies reported here propose a novel role for α5β1 integrin - the principle mediator of fibronectin matrix assembly (FNMA) - as an invasion suppressor of prostate cancer cells.</p> <p>Methods</p> <p>Using a combination of biophysical and cell biological methods, and well-characterized prostate cancer cell lines of varying invasiveness, we explore the relationship between cohesion, invasiveness, and FNMA.</p> <p>Results</p> <p>We show that cohesion is inversely proportional to invasive capacity. We also show that more invasive cells express lower levels of α5β1 integrin and lack the capacity for FNMA. Cells were generated to over-express either wild-type α5 integrin or an integrin in which the cytoplasmic domain of α5 was replaced with that of α2. The α2 construct does not promote FNMA. We show that only wild-type α5 integrin promotes aggregate compaction, increases cohesion, and reduces invasion of the more aggressive cells, and that these effects can be blocked by the 70-kDa fibronectin fragment.</p> <p>Conclusions</p> <p>We propose that restoring capacity for FNMA in deficient cells can increase tumor intercellular cohesion to a point that significantly reduces cell detachment and subsequent invasion. In prostate cancer, this could be of therapeutic benefit by blocking an early key step in the metastatic cascade.</p
Undulation Instability of Epithelial Tissues
Treating the epithelium as an incompressible fluid adjacent to a viscoelastic
stroma, we find a novel hydrodynamic instability that leads to the formation of
protrusions of the epithelium into the stroma. This instability is a candidate
for epithelial fingering observed in vivo. It occurs for sufficiently large
viscosity, cell-division rate and thickness of the dividing region in the
epithelium. Our work provides physical insight into a potential mechanism by
which interfaces between epithelia and stromas undulate, and potentially by
which tissue dysplasia leads to cancerous invasion.Comment: 4 pages, 3 figure
Aspiration of biological viscoelastic drops
Spherical cellular aggregates are in vitro systems to study the physical and
biophysical properties of tissues. We present a novel approach to characterize
the mechanical properties of cellular aggregates using micropipette aspiration
technique. We observe an aspiration in two distinct regimes, a fast elastic
deformation followed by a viscous flow. We develop a model based on this
viscoelastic behavior to deduce the surface tension, viscosity, and elastic
modulus. A major result is the increase of the surface tension with the applied
force, interpreted as an effect of cellular mechanosensing.Comment: 4 pages, 4 figures
Scaling of Traction Forces with Size of Cohesive Cell Colonies
To understand how the mechanical properties of tissues emerge from
interactions of multiple cells, we measure traction stresses of cohesive
colonies of 1-27 cells adherent to soft substrates. We find that traction
stresses are generally localized at the periphery of the colony and the total
traction force scales with the colony radius. For large colony sizes, the
scaling appears to approach linear, suggesting the emergence of an apparent
surface tension of order 1E-3 N/m. A simple model of the cell colony as a
contractile elastic medium coupled to the substrate captures the spatial
distribution of traction forces and the scaling of traction forces with the
colony size.Comment: 5 pages, 3 figure
Kinetic Monte Carlo and Cellular Particle Dynamics Simulations of Multicellular Systems
Computer modeling of multicellular systems has been a valuable tool for
interpreting and guiding in vitro experiments relevant to embryonic
morphogenesis, tumor growth, angiogenesis and, lately, structure formation
following the printing of cell aggregates as bioink particles. Computer
simulations based on Metropolis Monte Carlo (MMC) algorithms were successful in
explaining and predicting the resulting stationary structures (corresponding to
the lowest adhesion energy state). Here we present two alternatives to the MMC
approach for modeling cellular motion and self-assembly: (1) a kinetic Monte
Carlo (KMC), and (2) a cellular particle dynamics (CPD) method. Unlike MMC,
both KMC and CPD methods are capable of simulating the dynamics of the cellular
system in real time. In the KMC approach a transition rate is associated with
possible rearrangements of the cellular system, and the corresponding time
evolution is expressed in terms of these rates. In the CPD approach cells are
modeled as interacting cellular particles (CPs) and the time evolution of the
multicellular system is determined by integrating the equations of motion of
all CPs. The KMC and CPD methods are tested and compared by simulating two
experimentally well known phenomena: (1) cell-sorting within an aggregate
formed by two types of cells with different adhesivities, and (2) fusion of two
spherical aggregates of living cells.Comment: 11 pages, 7 figures; submitted to Phys Rev
Fibronectin Matrix Assembly Suppresses Dispersal of Glioblastoma Cells
Glioblastoma (GBM), the most aggressive and most common form of primary brain tumor, has a median survival of 12–15 months. Surgical excision, radiation and chemotherapy are rarely curative since tumor cells broadly disperse within the brain. Preventing dispersal could be of therapeutic benefit. Previous studies have reported that increased cell-cell cohesion can markedly reduce invasion by discouraging cell detachment from the tumor mass. We have previously reported that α5β1 integrin-fibronectin interaction is a powerful mediator of indirect cell-cell cohesion and that the process of fibronectin matrix assembly (FNMA) is crucial to establishing strong bonds between cells in 3D tumor-like spheroids. Here, we explore a potential role for FNMA in preventing dispersal of GBM cells from a tumor-like mass. Using a series of GBM-derived cell lines we developed an in vitro assay to measure the dispersal velocity of aggregates on a solid substrate. Despite their similar pathologic grade, aggregates from these lines spread at markedly different rates. Spreading velocity is inversely proportional to capacity for FNMA and restoring FNMA in GBM cells markedly reduces spreading velocity by keeping cells more connected. Blocking FNMA using the 70 KDa fibronectin fragment in FNMA-restored cells rescues spreading velocity, establishing a functional role for FNMA in mediating dispersal. Collectively, the data support a functional causation between restoration of FNMA and decreased dispersal velocity. This is a first demonstration that FNMA can play a suppressive role in GBM dispersal
Exponential Distribution of Locomotion Activity in Cell Cultures
In vitro velocities of several cell types have been measured using computer
controlled video microscopy, which allowed to record the cells' trajectories
over several days. On the basis of our large data sets we show that the
locomotion activity displays a universal exponential distribution. Thus, motion
resulting from complex cellular processes can be well described by an
unexpected, but very simple distribution function. A simple phenomenological
model based on the interaction of various cellular processes and finite ATP
production rate is proposed to explain these experimental results.Comment: 4 pages, 3 figure
Mechanical Stress Inference for Two Dimensional Cell Arrays
Many morphogenetic processes involve mechanical rearrangement of epithelial
tissues that is driven by precisely regulated cytoskeletal forces and cell
adhesion. The mechanical state of the cell and intercellular adhesion are not
only the targets of regulation, but are themselves likely signals that
coordinate developmental process. Yet, because it is difficult to directly
measure mechanical stress {\it in vivo} on sub-cellular scale, little is
understood about the role of mechanics of development. Here we present an
alternative approach which takes advantage of the recent progress in live
imaging of morphogenetic processes and uses computational analysis of high
resolution images of epithelial tissues to infer relative magnitude of forces
acting within and between cells. We model intracellular stress in terms of bulk
pressure and interfacial tension, allowing these parameters to vary from cell
to cell and from interface to interface. Assuming that epithelial cell layers
are close to mechanical equilibrium, we use the observed geometry of the two
dimensional cell array to infer interfacial tensions and intracellular
pressures. Here we present the mathematical formulation of the proposed
Mechanical Inverse method and apply it to the analysis of epithelial cell
layers observed at the onset of ventral furrow formation in the {\it
Drosophila} embryo and in the process of hair-cell determination in the avian
cochlea. The analysis reveals mechanical anisotropy in the former process and
mechanical heterogeneity, correlated with cell differentiation, in the latter
process. The method opens a way for quantitative and detailed experimental
tests of models of cell and tissue mechanics
A statistical approach to estimating the strength of cell-cell interactions under the differential adhesion hypothesis
International audienceBACKGROUND: The Differential Adhesion Hypothesis (DAH) is a theory of the organization of cells within a tissue which has been validated by several biological experiments and tested against several alternative computational models. RESULTS: In this study, a statistical approach was developed for the estimation of the strength of adhesion, incorporating earlier discrete lattice models into a continuous marked point process framework. This framework allows to describe an ergodic Markov Chain Monte Carlo algorithm that can simulate the model and reproduce empirical biological patterns. The estimation procedure, based on a pseudo-likelihood approximation, is validated with simulations, and a brief application to medulloblastoma stained by beta-catenin markers is given. CONCLUSION: Our model includes the strength of cell-cell adhesion as a statistical parameter. The estimation procedure for this parameter is consistent with experimental data and would be useful for high-throughput cancer studies
- …