267 research outputs found
Evolution of non-stationary pulses in a cold magnetized quark-gluon plasma
We study weakly nonlinear wave perturbations propagating in a cold
nonrelativistic and magnetized ideal quark-gluon plasma. We show that such
perturbations can be described by the Ostrovsky equation. The derivation of
this equation is presented for the baryon density perturbations. Then we show
that the generalized nonlinear Schr{\"o}dinger (NLS) equation can be derived
from the Ostrovsky equation for the description of quasi-harmonic wave trains.
This equation is modulationally stable for the wave number and
unstable for , where is the wave number where the group velocity
has a maximum. We study numerically the dynamics of initial wave packets with
the different carrier wave numbers and demonstrate that depending on the
initial parameters they can evolve either into the NLS envelope solitons or
into dispersive wave trains
Similarities between interstitial cystitis/bladder pain syndrome and vulvodynia: implications for patient management
Interstitial cystitis/bladder pain syndrome (IC/BPS) and vulvodynia are chronic pain syndromes that appear to be intertwined from the perspectives of embryology, pathology and epidemiology. These associations may account for similar responses to various therapies
Energy transfer dynamics and thermalization of two oscillators interacting via chaos
We consider the classical dynamics of two particles moving in harmonic
potential wells and interacting with the same external environment (HE),
consisting of N non-interacting chaotic systems. The parameters are set so that
when either particle is separately placed in contact with the environment, a
dissipative behavior is observed. When both particles are simultaneously in
contact with HE an indirect coupling between them is observed only if the
particles are in near resonance. We study the equilibrium properties of the
system considering ensemble averages for the case N=1 and single trajectory
dynamics for N large. In both cases, the particles and the environment reach an
equilibrium configuration at long times, but only for large N a temperature can
be assigned to the system.Comment: 8 pages, 6 figure
Loop expansion in Yang-Mills thermodynamics
We argue that a selfconsistent spatial coarse-graining, which involves
interacting (anti)calorons of unit topological charge modulus, implies that
real-time loop expansions of thermodynamical quantities in the deconfining
phase of SU(2) and SU(3) Yang-Mills thermodynamics are, modulo 1PI
resummations, determined by a finite number of connected bubble diagrams.Comment: 15 pages, 2 figures, v5: discussion of much more severely constrained
nonplanar situation included in Sec.
Identification and quantification of dolichol and dolichoic acid in neuromelanin from substantia nigra of the human brain.
Neuromelanin (NM) isolated from the substantia nigra of the human brain is found to contain a series of dolichoic acids (dol-CA) containing 14–20 isoprene units. This is the first observation of dol-CA in a natural system. Using internally spiked nor-dolichol and nor-dolichoic acid standards, the concentrations of dolichol (dol) and dol-CA present in NM were determined. Remarkably, dol was only four times as abundant as dol-CA in NM. The distribution of dol-CA chains lengths in NM also differed from that of dol, suggesting that the enzyme(s) responsible for the conversion of dol to dol-CA prefer a dolichol substrate containing 19 isoprene units
A Planck-scale axion and SU(2) Yang-Mills dynamics: Present acceleration and the fate of the photon
From the time of CMB decoupling onwards we investigate cosmological evolution
subject to a strongly interacting SU(2) gauge theory of Yang-Mills scale
eV (masquerading as the factor of the SM at
present). The viability of this postulate is discussed in view of cosmological
and (astro)particle physics bounds. The gauge theory is coupled to a spatially
homogeneous and ultra-light (Planck-scale) axion field. As first pointed out by
Frieman et al., such an axion is a viable candidate for quintessence, i.e.
dynamical dark energy, being associated with today's cosmological acceleration.
A prediction of an upper limit for the duration of the
epoch stretching from the present to the point where the photon starts to be
Meissner massive is obtained: billion years.Comment: v3: consequences of an error in evolution equation for coupling
rectified, only a minimal change in physics results, two refs. adde
- …