505 research outputs found

    Cretan Καδέστας

    Get PDF

    Assessing the level of spatial homogeneity of the agronomic Indian monsoon onset

    Get PDF
    Over monsoon regions, such as the Indian subcontinent, the local onset of persistent rainfall is a crucial event in the annual climate for agricultural planning. Recent work suggested that local onset dates are spatially coherent to a practical level over West Africa; a similar assessment is undertaken here for the Indian subcontinent. Areas of coherent onset, defined as local onset regions or LORs, exist over the studied region. These LORs are significant up to the 95% confidence interval and are primarily clustered around the Arabian Sea (adjacent to and extending over the Western Ghats), the Monsoon Trough (north central India), and the Bay of Bengal. These LORs capture regions where synoptic scale controls of onset may be present and identifiable. In other regions, the absence of LORs is indicative of regions where local and stochastic factors may dominate onset. A potential link between sea surface temperature anomalies and LOR variability is presented. Finally, Kerala, which is often used as a representative onset location, is not contained within an LOR suggesting that variability here may not be representative of wider onset variability

    A Continuum Saltation Model for Sand Dunes

    Full text link
    We derive a phenomenological continuum saltation model for aeolian sand transport that can serve as an efficient tool for geomorphological applications. The coupled differential equations for the average density and velocity of sand in the saltation layer reproduce both known equilibrium relations for the sand flux and the time evolution of the sand flux as predicted by microscopic saltation models. The three phenomenological parameters of the model are a reference height for the grain-air interaction, an effective restitution coefficient for the grain-bed interaction, and a multiplication factor characterizing the chain reaction caused by the impacts leading to a typical time or length scale of the saturation transients. We determine the values of these parameters by comparing our model with wind tunnel measurements. Our main interest are out of equilibrium situations where saturation transients are important, for instance at phase boundaries (ground/sand) or under unsteady wind conditions. We point out that saturation transients are indispensable for a proper description of sand flux over structured terrain, by applying the model to the windward side of an isolated dune, thereby resolving recently reported discrepancies between field measurements and theoretical predictions.Comment: 11 pages, 7 figure

    Corridors of barchan dunes: stability and size selection

    Get PDF
    Barchans are crescentic dunes propagating on a solid ground. They form dune fields in the shape of elongated corridors in which the size and spacing between dunes are rather well selected. We show that even very realistic models for solitary dunes do not reproduce these corridors. Instead, two instabilities take place. First, barchans receive a sand flux at their back proportional to their width while the sand escapes only from their horns. Large dunes proportionally capture more than they loose sand, while the situation is reversed for small ones: therefore, solitary dunes cannot remain in a steady state. Second, the propagation speed of dunes decreases with the size of the dune: this leads -- through the collision process -- to a coarsening of barchan fields. We show that these phenomena are not specific to the model, but result from general and robust mechanisms. The length scales needed for these instabilities to develop are derived and discussed. They turn out to be much smaller than the dune field length. As a conclusion, there should exist further - yet unknown - mechanisms regulating and selecting the size of dunes.Comment: 13 pages, 13 figures. New version resubmitted to Phys. Rev. E. Pictures of better quality available on reques

    How safe is safely managed on-site sanitation? What we need to know beyond global monitoring

    Get PDF
    Halfway through the Sustainable Development Goal (SDG) period, there has been little research on the criteria for monitoring safely managed sanitation under SDG target 6.2. For reporting against SDGs, global indicators are necessarily limited and exclude many safety aspects from a public and environmental health perspective. Primary survey data from 31,784 households in seven countries in Asia and Africa were analysed, comparing estimates of safely managed on-site sanitation based on global indicators with five complementary indicators of safety: animal access to excreta, flooding and overflow, groundwater contamination, emptying frequency, and the safety of emptying. Application of additional criteria reduced the population with safely managed sanitation by 0.4-38% for specific indicators, with the largest impact due to the risk of groundwater contamination, animal access, and containments overdue for emptying. Combining these indicators across the service chain, excluding transport and treatment, found three-quarters of on-site systems currently assessed as safely managed with global indicators were considered unsafe based on complementary indicators. A more comprehensive assessment of safety of on-site sanitation can be achieved through these indicators, which could be integrated into national monitoring systems and used to inform sanitation investments that address local health related risks

    Indicators to complement global monitoring of safely managed on-site sanitation to understand health risks

    Get PDF
    Halfway through the Sustainable Development Goal (SDG) period, there has been little research on the criteria for monitoring safely managed sanitation under SDG target 6.2. For reporting against SDGs, global indicators are necessarily limited and exclude many safety aspects from a public health perspective. Primary survey data from 31,784 households in seven countries in Asia and Africa were analysed, comparing estimates of safely managed on-site sanitation based on global indicators with five complementary indicators of safety: animal access to excreta, groundwater contamination, overdue emptying, entering containments to empty and inadequate protection during emptying. Application of additional criteria reduced the population with safely managed sanitation by 0.4–35% for specific indicators, with the largest impact due to the risk of groundwater contamination, animal access, and containments overdue for emptying. Combining these indicators across the service chain, excluding transport and treatment, found almost three-quarters of on-site systems currently assessed as safely managed with global indicators were considered unsafe based on complementary indicators. A more comprehensive assessment of safety of on-site sanitation can be achieved through these indicators, which could be integrated into national monitoring systems and used to inform sanitation investments that address local health-related risks

    Diquat Derivatives: Highly Active, Two-Dimensional Nonlinear Optical Chromophores with Potential Redox Switchability

    Get PDF
    In this article, we present a detailed study of structure−activity relationships in diquaternized 2,2′-bipyridyl (diquat) derivatives. Sixteen new chromophores have been synthesized, with variations in the amino electron donor substituents, π-conjugated bridge, and alkyl diquaternizing unit. Our aim is to combine very large, two-dimensional (2D) quadratic nonlinear optical (NLO) responses with reversible redox chemistry. The chromophores have been characterized as their PF_6^− salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Their visible absorption spectra are dominated by intense π → π^* intramolecular charge-transfer (ICT) bands, and all show two reversible diquat-based reductions. First hyperpolarizabilities β have been measured by using hyper-Rayleigh scattering with an 800 nm laser, and Stark spectroscopy of the ICT bands affords estimated static first hyperpolarizabilities β_0. The directly and indirectly derived β values are large and increase with the extent of π-conjugation and electron donor strength. Extending the quaternizing alkyl linkage always increases the ICT energy and decreases the E_(1/2) values for diquat reduction, but a compensating increase in the ICT intensity prevents significant decreases in Stark-based β_0 responses. Nine single-crystal X-ray structures have also been obtained. Time-dependent density functional theory clarifies the molecular electronic/optical properties, and finite field calculations agree with polarized HRS data in that the NLO responses of the disubstituted species are dominated by ‘off-diagonal’ β_(zyy) components. The most significant findings of these studies are: (i) β_0 values as much as 6 times that of the chromophore in the technologically important material (E)-4′-(dimethylamino)-N-methyl-4-stilbazolium tosylate; (ii) reversible electrochemistry that offers potential for redox-switching of optical properties over multiple states; (iii) strongly 2D NLO responses that may be exploited for novel practical applications; (iv) a new polar material, suitable for bulk NLO behavior

    Use of a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation

    Get PDF
    The aim of this study was to apply a generated Δtku70 strain with increased homologous recombination efficiency from the mycoparasitic fungus Trichoderma virens for studying the involvement of laccases in the degradation of sclerotia of plant pathogenic fungi. Inactivation of the non-homologous end-joining pathway has become a successful tool in filamentous fungi to overcome poor targeting efficiencies for genetic engineering. Here, we applied this principle to the biocontrol fungus T. virens, strain I10, by deleting its tku70 gene. This strain was subsequently used to delete the laccase gene lcc1, which we found to be expressed after interaction of T. virens with sclerotia of the plant pathogenic fungi Botrytis cinerea and Sclerotinia sclerotiorum. Lcc1 was strongly upregulated at early colonization of B. cinerea sclerotia and steadily induced during colonization of S. sclerotiorum sclerotia. The Δtku70Δlcc1 mutant was altered in its ability to degrade the sclerotia of B. cinerea and S. sclerotiorum. Interestingly, while the decaying ability for B. cinerea sclerotia was significantly decreased, that to degrade S. sclerotiorum sclerotia was even enhanced, suggesting the operation of different mechanisms in the mycoparasitism of these two types of sclerotia by the laccase LCC1

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation
    corecore