11,177 research outputs found

    An experimental measurement of galactic cosmic radiation dose in conventional aircraft between San Francisco and London compared to theoretical values for conventional and supersonic aircraft

    Get PDF
    These direct measurements are in fair agreement with computations made using a program which considers both basic cosmic ray atmospheric physics and the focusing effect of the earth's magnetic field. These measurements also agree with those made at supersonic jet aircraft altitudes in Rb-57 aircraft. It is concluded that experiments and theory show that the doses received at conventional jet aircraft altitudes are slightly higher than those encountered in supersonic flights at much higher altitudes

    Optical properties of potential-inserted quantum wells in the near infrared and Terahertz ranges

    Full text link
    We propose an engineering of the optical properties of GaAs/AlGaAs quantum wells using AlAs and InAs monolayer insertions. A quantitative study of the effects of the monolayer position and the well thickness on the interband and intersubband transitions, based on the extended-basis sp3d5s* tight-binding model, is presented. The effect of insertion on the interband transitions is compared with existing experimental data. As for intersubband transitions, we show that in a GaAs/AlGaAs quantum well including two AlAs and one InAs insertions, a three level {e1 , e2 , e3 } system where the transition energy e3-e2 is lower and the transition energy e2-e1 larger than the longitudinal optical phonon energy (36 meV) can be engineered together with a e3-e2 transition energy widely tunable through the TeraHertz range

    Derivation of the Blackbody Radiation Spectrum from a Natural Maximum-Entropy Principle Involving Casimir Energies and Zero-Point Radiation

    Get PDF
    By numerical calculation, the Planck spectrum with zero-point radiation is shown to satisfy a natural maximum-entropy principle whereas alternative choices of spectra do not. Specifically, if we consider a set of conducting-walled boxes, each with a partition placed at a different location in the box, so that across the collection of boxes the partitions are uniformly spaced across the volume, then the Planck spectrum correspond to that spectrum of random radiation (having constant energy kT per normal mode at low frequencies and zero-point energy (1/2)hw per normal mode at high frequencies) which gives maximum uniformity across the collection of boxes for the radiation energy per box. The analysis involves Casimir energies and zero-point radiation which do not usually appear in thermodynamic analyses. For simplicity, the analysis is presented for waves in one space dimension.Comment: 11 page

    Quantum Algorithms for Matrix Products over Semirings

    Full text link
    In this paper we construct quantum algorithms for matrix products over several algebraic structures called semirings, including the (max,min)-matrix product, the distance matrix product and the Boolean matrix product. In particular, we obtain the following results. We construct a quantum algorithm computing the product of two n x n matrices over the (max,min) semiring with time complexity O(n^{2.473}). In comparison, the best known classical algorithm for the same problem, by Duan and Pettie, has complexity O(n^{2.687}). As an application, we obtain a O(n^{2.473})-time quantum algorithm for computing the all-pairs bottleneck paths of a graph with n vertices, while classically the best upper bound for this task is O(n^{2.687}), again by Duan and Pettie. We construct a quantum algorithm computing the L most significant bits of each entry of the distance product of two n x n matrices in time O(2^{0.64L} n^{2.46}). In comparison, prior to the present work, the best known classical algorithm for the same problem, by Vassilevska and Williams and Yuster, had complexity O(2^{L}n^{2.69}). Our techniques lead to further improvements for classical algorithms as well, reducing the classical complexity to O(2^{0.96L}n^{2.69}), which gives a sublinear dependency on 2^L. The above two algorithms are the first quantum algorithms that perform better than the O~(n5/2)\tilde O(n^{5/2})-time straightforward quantum algorithm based on quantum search for matrix multiplication over these semirings. We also consider the Boolean semiring, and construct a quantum algorithm computing the product of two n x n Boolean matrices that outperforms the best known classical algorithms for sparse matrices. For instance, if the input matrices have O(n^{1.686...}) non-zero entries, then our algorithm has time complexity O(n^{2.277}), while the best classical algorithm has complexity O(n^{2.373}).Comment: 19 page

    Generating anisotropic fluids from vacuum Ernst equations

    Get PDF
    Starting with any stationary axisymmetric vacuum metric, we build anisotropic fluids. With the help of the Ernst method, the basic equations are derived together with the expression for the energy-momentum tensor and with the equation of state compatible with the field equations. The method is presented by using different coordinate systems: the cylindrical coordinates ρ,z\rho, z and the oblate spheroidal ones. A class of interior solutions matching with stationary axisymmetric asymptotically flat vacuum solutions is found in oblate spheroidal coordinates. The solutions presented satisfy the three energy conditions.Comment: Version published on IJMPD, title changed by the revie

    The Large Magellanic Cloud as a laboratory for Hot Bottom Burning in massive Asymptotic Giant Branch stars

    Get PDF
    We use Spitzer observations of the rich population of Asymptotic Giant Branch stars in the Large Magellanic Cloud (LMC) to test models describing the internal structure and nucleosynthesis of the most massive of these stars, i.e. those with initial mass above 4M\sim 4M_{\odot}. To this aim, we compare Spitzer observations of LMC stars with the theoretical tracks of Asymptotic Giant Branch models, calculated with two of the most popular evolution codes, that are known to differ in particular for the treatment of convection. Although the physical evolution of the two models are significantly different, the properties of dust formed in their winds are surprisingly similar, as is their position in the colour-colour (CCD) and colour-magnitude (CMD) diagrams obtained with the Spitzer bands. This model independent result allows us to select a well defined region in the ([3.6][4.5],[5.8][8.0][3.6]-[4.5], [5.8]-[8.0]) plane, populated by AGB stars experiencing Hot Bottom Burning, the progeny of stars with mass M5.5MM\sim 5.5M_{\odot}. This result opens up an important test of the strength hot bottom burning using detailed near-IR (H and K bands) spectroscopic analysis of the oxygen-rich, high luminosity candidates found in the well defined region of the colour-colour plane. This test is possible because the two stellar evolution codes we use predict very different results for the surface chemistry, and the C/O ratio in particular, owing to their treatment of convection in the envelope and of convective boundaries during third dredge-up. The differences in surface chemistry are most apparent when the model stars reach the phase with the largest infrared emission.Comment: 11 pages, 14 figures, accepted for publication in MNRA

    Hydrodynamic reductions of the heavenly equation

    Full text link
    We demonstrate that Pleba\'nski's first heavenly equation decouples in infinitely many ways into a triple of commuting (1+1)-dimensional systems of hydrodynamic type which satisfy the Egorov property. Solving these systems by the generalized hodograph method, one can construct exact solutions of the heavenly equation parametrized by arbitrary functions of a single variable. We discuss explicit examples of hydrodynamic reductions associated with the equations of one-dimensional nonlinear elasticity, linearly degenerate systems and the equations of associativity.Comment: 14 page

    Numerical study of domain coarsening in anisotropic stripe patterns

    Full text link
    We study the coarsening of two-dimensional smectic polycrystals characterized by grains of oblique stripes with only two possible orientations. For this purpose, an anisotropic Swift-Hohenberg equation is solved. For quenches close enough to the onset of stripe formation, the average domain size increases with time as t1/2t^{1/2}. Further from onset, anisotropic pinning forces similar to Peierls stresses in solid crystals slow down defects, and growth becomes anisotropic. In a wide range of quench depths, dislocation arrays remain mobile and dislocation density roughly decays as t1/3t^{-1/3}, while chevron boundaries are totally pinned. We discuss some agreements and disagreements found with recent experimental results on the coarsening of anisotropic electroconvection patterns.Comment: 8 pages, 11 figures. Phys. Rev E, to appea

    Gamma-ray diagnostics of Type Ia supernovae: Predictions of observables from three-dimensional modeling

    Full text link
    Besides the fact that the gamma-ray emission due to radioactive decays is responsible for powering the light curves of Type Ia supernovae (SNe Ia), gamma rays themselves are of particular interest as a diagnostic tool because they provide a direct way to obtain deeper insights into the nucleosynthesis and the kinematics of these explosion events. Focusing on two of the most broadly discussed SN Ia progenitor scenarios - a delayed detonation in a Chandrasekhar-mass white dwarf (WD) and a violent merger of two WDs - we use three-dimensional explosion models and perform radiative transfer simulations to obtain synthetic gamma-ray spectra. Both chosen models produce the same mass of 56Ni and have similar optical properties that are in reasonable agreement with the recently observed supernova SN 2011fe. In contrast to the optical regime, the gamma-ray emission of our two chosen models proves to be rather different. The almost direct connection of the emission of gamma rays to fundamental physical processes occuring in SNe Ia permits additional constraints concerning several explosion model properties that are not easily accessible within other wavelength ranges. Proposed future MeV missions such as GRIPS will resolve all spectral details only for nearby SNe Ia, but hardness ratio and light curve measurements still allow for a distinction of the two different models at 10 and 16 Mpc for an exposure time of 10^6 s, respectively. The possibility to detect the strongest line features up to the Virgo distance will offer the opportunity to build up a first sample of SN Ia detections in the gamma-ray energy range and underlines the importance of future space observatories for MeV gamma rays.Comment: 10 pages, 8 figures, accepted for publication by A&

    Randomizing world trade. II. A weighted network analysis

    Get PDF
    Based on the misleading expectation that weighted network properties always offer a more complete description than purely topological ones, current economic models of the International Trade Network (ITN) generally aim at explaining local weighted properties, not local binary ones. Here we complement our analysis of the binary projections of the ITN by considering its weighted representations. We show that, unlike the binary case, all possible weighted representations of the ITN (directed/undirected, aggregated/disaggregated) cannot be traced back to local country-specific properties, which are therefore of limited informativeness. Our two papers show that traditional macroeconomic approaches systematically fail to capture the key properties of the ITN. In the binary case, they do not focus on the degree sequence and hence cannot characterize or replicate higher-order properties. In the weighted case, they generally focus on the strength sequence, but the knowledge of the latter is not enough in order to understand or reproduce indirect effects.Comment: See also the companion paper (Part I): arXiv:1103.1243 [physics.soc-ph], published as Phys. Rev. E 84, 046117 (2011
    corecore