387 research outputs found

    Anomalous magneto-oscillations and spin precession

    Full text link
    A semiclassical analysis based on concepts developed in quantum chaos reveals that anomalous magneto-oscillations in quasi two-dimensional systems with spin-orbit interaction reflect the non-adiabatic spin precession of a classical spin vector along the cyclotron orbits.Comment: 4 pages, 2 figure

    Subalgebras with Converging Star Products in Deformation Quantization: An Algebraic Construction for \complex \mbox{\LARGE P}^n

    Full text link
    Based on a closed formula for a star product of Wick type on \CP^n, which has been discovered in an earlier article of the authors, we explicitly construct a subalgebra of the formal star-algebra (with coefficients contained in the uniformly dense subspace of representative functions with respect to the canonical action of the unitary group) that consists of {\em converging} power series in the formal parameter, thereby giving an elementary algebraic proof of a convergence result already obtained by Cahen, Gutt, and Rawnsley. In this subalgebra the formal parameter can be substituted by a real number α\alpha: the resulting associative algebras are infinite-dimensional except for the case α=1/K\alpha=1/K, KK a positive integer, where they turn out to be isomorphic to the finite-dimensional algebra of linear operators in the KKth energy eigenspace of an isotropic harmonic oscillator with n+1n+1 degrees of freedom. Other examples like the 2n2n-torus and the Poincar\'e disk are discussed.Comment: 16 pages, LaTeX with AMS Font

    Natural History Of Atopic Disease In Early Childhood: Is Cord Blood IgE A Prognostic Factor?

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68008/2/10.1177_000992289203100411.pd

    Semiclassical Time Evolution and Trace Formula for Relativistic Spin-1/2 Particles

    Full text link
    We investigate the Dirac equation in the semiclassical limit \hbar --> 0. A semiclassical propagator and a trace formula are derived and are shown to be determined by the classical orbits of a relativistic point particle. In addition, two phase factors enter, one of which can be calculated from the Thomas precession of a classical spin transported along the particle orbits. For the second factor we provide an interpretation in terms of dynamical and geometric phases.Comment: 8 pages, no figure

    Complexification of Gauge Theories

    Get PDF
    For the case of a first-class constrained system with an equivariant momentum map, we study the conditions under which the double process of reducing to the constraint surface and dividing out by the group of gauge transformations GG is equivalent to the single process of dividing out the initial phase space by the complexification GCG_C of GG. For the particular case of a phase space action that is the lift of a configuration space action, conditions are found under which, in finite dimensions, the physical phase space of a gauge system with first-class constraints is diffeomorphic to a manifold imbedded in the physical configuration space of the complexified gauge system. Similar conditions are shown to hold in the infinite-dimensional example of Yang-Mills theories. As a physical application we discuss the adequateness of using holomorphic Wilson loop variables as (generalized) global coordinates on the physical phase space of Yang-Mills theory.Comment: 25pp., LaTeX, Syracuse SU-GP-93/6-2, Lisbon DF/IST 6.9

    Direct Detection of Electroweak-Interacting Dark Matter

    Full text link
    Assuming that the lightest neutral component in an SU(2)L gauge multiplet is the main ingredient of dark matter in the universe, we calculate the elastic scattering cross section of the dark matter with nucleon, which is an important quantity for the direct detection experiments. When the dark matter is a real scalar or a Majorana fermion which has only electroweak gauge interactions, the scattering with quarks and gluon are induced through one- and two-loop quantum processes, respectively, and both of them give rise to comparable contributions to the elastic scattering cross section. We evaluate all of the contributions at the leading order and find that there is an accidental cancellation among them. As a result, the spin-independent cross section is found to be O(10^-(46-48)) cm^2, which is far below the current experimental bounds.Comment: 19 pages, 7 figures, published versio

    Nonlinear stochastic evolution equations of second order with damping

    Get PDF
    Convergence of a full discretization of a second order stochastic evolution equation with nonlinear damping is shown and thus existence of a solution is established. The discretization scheme combines an implicit time stepping scheme with an internal approximation. Uniqueness is proved as well.Comment: This is the version of the article accepted for publication. The final publication is available at http://link.springer.co

    Phase Space Reduction for Star-Products: An Explicit Construction for CP^n

    Full text link
    We derive a closed formula for a star-product on complex projective space and on the domain SU(n+1)/S(U(1)×U(n))SU(n+1)/S(U(1)\times U(n)) using a completely elementary construction: Starting from the standard star-product of Wick type on Cn+1∖{0}C^{n+1} \setminus \{ 0 \} and performing a quantum analogue of Marsden-Weinstein reduction, we can give an easy algebraic description of this star-product. Moreover, going over to a modified star-product on Cn+1∖{0}C^{n+1} \setminus \{ 0 \}, obtained by an equivalence transformation, this description can be even further simplified, allowing the explicit computation of a closed formula for the star-product on \CP^n which can easily transferred to the domain SU(n+1)/S(U(1)×U(n))SU(n+1)/S(U(1)\times U(n)).Comment: LaTeX, 17 page
    • …
    corecore