23,498 research outputs found

    Development of the activated diffusion brazing process for fabrication of finned shell to strut turbine blades

    Get PDF
    The activated diffusion brazing process was developed for attaching TD-NiCr and U700 finned airfoil shells to matching Rene 80 struts obstructing the finned cooling passageways. Creep forming the finned shells to struts in combination with precise preplacement of brazing alloy resulted in consistently sound joints, free of cooling passageway clogging. Extensive tensile and stress rupture testing of several joint orientation at several temperatures provided a critical assessment of joint integrity of both material combinations. Trial blades of each material combination were fabricated followed by destructive metallographic examination which verified high joint integrity

    Different Facets of Chaos in Quantum Mechanics

    Full text link
    Nowadays there is no universally accepted definition of quantum chaos. In this paper we review and critically discuss different approaches to the subject, such as Quantum Chaology and the Random Matrix Theory. Then we analyze the problem of dynamical chaos and the time scales associated with chaos suppression in quantum mechanics. Summary: 1. Introduction 2. Quantum Chaology and Spectral Statistics 3. From Poisson to GOE Transition: Comparison with Experimental Data 3.1 Atomic Nuclei 3.2 The Hydrogen Atom in the Strong Magnetic Field 4. Quantum Chaos and Field Theory 5. Alternative Approaches to Quantum Chaos 6. Dynamical Quantum Chaos and Time Scales 6.1 Mean-Field Approximation and Dynamical Chaos 7. ConclusionsComment: RevTex, 25 pages, 7 postscript figures, to be published in Int. J. Mod. Phys.

    Multiple jet impingement heat transfer characteristic: Experimental investigation of in-line and staggered arrays with crossflow

    Get PDF
    Heat transfer characteristics were obtained for configurations designed to model the impingement cooled midchord region of air cooled gas turbine airfoils. The configurations tested were inline and staggered two-dimensional arrays of circular jets with ten spanwise rows of holes. The cooling air was constrained to exit in the chordwise direction along the channel formed by the jet orifice plate and the heat transfer surface. Tests were run for chordwise jet hole spacings of five, ten, and fifteen hole diameters; spanwise spacings of four, six, and eight diameters; and channel heights of one, two, three, and six diameters. Mean jet Reynolds numbers ranged from 5000 to 50,000. The thermal boundary condition at the heat transfer test surface was isothermal. Tests were run for sets of geometrically similar configurations of different sizes. Mean and chordwise resolved Nusselt numbers were determined utilizing a specially constructed test surface which was segmented in the chordwise direction

    Semi-classical calculations of the two-point correlation form factor for diffractive systems

    Full text link
    The computation of the two-point correlation form factor K(t) is performed for a rectangular billiard with a small size impurity inside for both periodic or Dirichlet boundary conditions. It is demonstrated that all terms of perturbation expansion of this form factor in powers of t can be computed directly by semiclassical trace formula. The main part of the calculation is the summation of non-diagonal terms in the cross product of classical orbits. When the diffraction coefficient is a constant our results coincide with expansion of exact expressions ontained by a different method.Comment: 42 pages, 10 figures, Late

    Level spacings and periodic orbits

    Full text link
    Starting from a semiclassical quantization condition based on the trace formula, we derive a periodic-orbit formula for the distribution of spacings of eigenvalues with k intermediate levels. Numerical tests verify the validity of this representation for the nearest-neighbor level spacing (k=0). In a second part, we present an asymptotic evaluation for large spacings, where consistency with random matrix theory is achieved for large k. We also discuss the relation with the method of Bogomolny and Keating [Phys. Rev. Lett. 77 (1996) 1472] for two-point correlations.Comment: 4 pages, 2 figures; major revisions in the second part, range of validity of asymptotic evaluation clarifie

    Theoretical derivation of 1/f noise in quantum chaos

    Get PDF
    It was recently conjectured that 1/f noise is a fundamental characteristic of spectral fluctuations in chaotic quantum systems. This conjecture is based on the behavior of the power spectrum of the excitation energy fluctuations, which is different for chaotic and integrable systems. Using random matrix theory we derive theoretical expressions that explain the power spectrum behavior at all frequencies. These expressions reproduce to a good approximation the power laws of type 1/f (1/f^2) characteristics of chaotic (integrable) systems, observed in almost the whole frequency domain. Although we use random matrix theory to derive these results, they are also valid for semiclassical systems.Comment: 5 pages (Latex), 3 figure

    Quasiclassical Random Matrix Theory

    Full text link
    We directly combine ideas of the quasiclassical approximation with random matrix theory and apply them to the study of the spectrum, in particular to the two-level correlator. Bogomolny's transfer operator T, quasiclassically an NxN unitary matrix, is considered to be a random matrix. Rather than rejecting all knowledge of the system, except for its symmetry, [as with Dyson's circular unitary ensemble], we choose an ensemble which incorporates the knowledge of the shortest periodic orbits, the prime quasiclassical information bearing on the spectrum. The results largely agree with expectations but contain novel features differing from other recent theories.Comment: 4 pages, RevTex, submitted to Phys. Rev. Lett., permanent e-mail [email protected]

    The Problem of Inertia in Friedmann Universes

    Full text link
    In this paper we study the origin of inertia in a curved spacetime, particularly the spatially flat, open and closed Friedmann universes. This is done using Sciama's law of inertial induction, which is based on Mach's principle, and expresses the analogy between the retarded far fields of electrodynamics and those of gravitation. After obtaining covariant expressions for electromagnetic fields due to an accelerating point charge in Friedmann models, we adopt Sciama's law to obtain the inertial force on an accelerating mass mm by integrating over the contributions from all the matter in the universe. The resulting inertial force has the form F=−kmaF = -kma, where k<1k < 1 depends on the choice of the cosmological parameters such as ΩM\Omega_{M}, ΩΛ\Omega_{\Lambda}, and ΩR\Omega_{R} and is also red-shift dependent.Comment: 10 page

    Teaching News Literacy During a Pandemic: Adapting to the Virtual Learning Environment

    Get PDF
    In the fall of 2020, as the coronavirus pandemic shuttered universities and sent much of higher education online, a team of media and information literacy experts at the University of Maine sought meaningful ways to collaboratively teach news literacy from a distance. The result of their efforts was a weeklong virtual program, Friend, Enemy, or Frenemy? A News Literacy Challenge, open to anyone with an internet connection and an email address. This approach to remote learning scaffolded multiple literacies (critical media, news, and information) into five days, as participants examined different aspects of news production and consumption. The overall objective of the challenge was to render participants more aware of how the news is constructed and, subsequently, more critical of the news they consume and share

    Teaching News Literacy During a Pandemic:: Adapting to the Virtual Learning Environment

    Get PDF
    This lesson plan is based on a collaborative teaching project between the co-authors that was implemented for an online community, over the course of a week in the fall of 2020, in response to the specific teaching and learning challenges presented by the pandemic. The online news literacy program was adapted and expanded from previous iterations of a one-day, in-person workshop, integrating specific pedagogical and engagement strategies for a much broader and more diverse learning community. The authors detail their approach to news literacy from a critical media and information literacy (CMIL) framework and how the program's content and activities were distributed and scaffolded across five days of online engagement
    • …
    corecore