We directly combine ideas of the quasiclassical approximation with random
matrix theory and apply them to the study of the spectrum, in particular to the
two-level correlator. Bogomolny's transfer operator T, quasiclassically an NxN
unitary matrix, is considered to be a random matrix. Rather than rejecting all
knowledge of the system, except for its symmetry, [as with Dyson's circular
unitary ensemble], we choose an ensemble which incorporates the knowledge of
the shortest periodic orbits, the prime quasiclassical information bearing on
the spectrum. The results largely agree with expectations but contain novel
features differing from other recent theories.Comment: 4 pages, RevTex, submitted to Phys. Rev. Lett., permanent e-mail
[email protected]