8,640 research outputs found
Structural matching by discrete relaxation
This paper describes a Bayesian framework for performing relational graph matching by discrete relaxation. Our basic aim is to draw on this framework to provide a comparative evaluation of a number of contrasting approaches to relational matching. Broadly speaking there are two main aspects to this study. Firstly we locus on the issue of how relational inexactness may be quantified. We illustrate that several popular relational distance measures can be recovered as specific limiting cases of the Bayesian consistency measure. The second aspect of our comparison concerns the way in which structural inexactness is controlled. We investigate three different realizations ai the matching process which draw on contrasting control models. The main conclusion of our study is that the active process of graph-editing outperforms the alternatives in terms of its ability to effectively control a large population of contaminating clutter
Correspondence matching with modal clusters
The modal correspondence method of Shapiro and Brady aims to match point-sets by comparing the eigenvectors of a pairwise point proximity matrix. Although elegant by means of its matrix representation, the method is notoriously susceptible to differences in the relational structure of the point-sets under consideration. In this paper, we demonstrate how the method can be rendered robust to structural differences by adopting a hierarchical approach. To do this, we place the modal matching problem in a probabilistic setting in which the correspondences between pairwise clusters can be used to constrain the individual point correspondences. We demonstrate the utility of the method on a number of synthetic and real-world point-pattern matching problems
Object recognition using shape-from-shading
This paper investigates whether surface topography information extracted from intensity images using a recently reported shape-from-shading (SFS) algorithm can be used for the purposes of 3D object recognition. We consider how curvature and shape-index information delivered by this algorithm can be used to recognize objects based on their surface topography. We explore two contrasting object recognition strategies. The first of these is based on a low-level attribute summary and uses histograms of curvature and orientation measurements. The second approach is based on the structural arrangement of constant shape-index maximal patches and their associated region attributes. We show that region curvedness and a string ordering of the regions according to size provides recognition accuracy of about 96 percent. By polling various recognition schemes. including a graph matching method. we show that a recognition rate of 98-99 percent is achievable
Graph edit distance from spectral seriation
This paper is concerned with computing graph edit distance. One of the criticisms that can be leveled at existing methods for computing graph edit distance is that they lack some of the formality and rigor of the computation of string edit distance. Hence, our aim is to convert graphs to string sequences so that string matching techniques can be used. To do this, we use a graph spectral seriation method to convert the adjacency matrix into a string or sequence order. We show how the serial ordering can be established using the leading eigenvector of the graph adjacency matrix. We pose the problem of graph-matching as a maximum a posteriori probability (MAP) alignment of the seriation sequences for pairs of graphs. This treatment leads to an expression in which the edit cost is the negative logarithm of the a posteriori sequence alignment probability. We compute the edit distance by finding the sequence of string edit operations which minimizes the cost of the path traversing the edit lattice. The edit costs are determined by the components of the leading eigenvectors of the adjacency matrix and by the edge densities of the graphs being matched. We demonstrate the utility of the edit distance on a number of graph clustering problems
New constraints on data-closeness and needle map consistency for shape-from-shading
This paper makes two contributions to the problem of needle-map recovery using shape-from-shading. First, we provide a geometric update procedure which allows the image irradiance equation to be satisfied as a hard constraint. This not only improves the data closeness of the recovered needle-map, but also removes the necessity for extensive parameter tuning. Second, we exploit the improved ease of control of the new shape-from-shading process to investigate various types of needle-map consistency constraint. The first set of constraints are based on needle-map smoothness. The second avenue of investigation is to use curvature information to impose topographic constraints. Third, we explore ways in which the needle-map is recovered so as to be consistent with the image gradient field. In each case we explore a variety of robust error measures and consistency weighting schemes that can be used to impose the desired constraints on the recovered needle-map. We provide an experimental assessment of the new shape-from-shading framework on both real world images and synthetic images with known ground truth surface normals. The main conclusion drawn from our analysis is that the data-closeness constraint improves the efficiency of shape-from-shading and that both the topographic and gradient consistency constraints improve the fidelity of the recovered needle-map
A graph-spectral approach to shape-from-shading
In this paper, we explore how graph-spectral methods can be used to develop a new shape-from-shading algorithm. We characterize the field of surface normals using a weight matrix whose elements are computed from the sectional curvature between different image locations and penalize large changes in surface normal direction. Modeling the blocks of the weight matrix as distinct surface patches, we use a graph seriation method to find a surface integration path that maximizes the sum of curvature-dependent weights and that can be used for the purposes of height reconstruction. To smooth the reconstructed surface, we fit quadrics to the height data for each patch. The smoothed surface normal directions are updated ensuring compliance with Lambert's law. The processes of height recovery and surface normal adjustment are interleaved and iterated until a stable surface is obtained. We provide results on synthetic and real-world imagery
Terrain analysis using radar shape-from-shading
This paper develops a maximum a posteriori (MAP) probability estimation framework for shape-from-shading (SFS) from synthetic aperture radar (SAR) images. The aim is to use this method to reconstruct surface topography from a single radar image of relatively complex terrain. Our MAP framework makes explicit how the recovery of local surface orientation depends on the whereabouts of terrain edge features and the available radar reflectance information. To apply the resulting process to real world radar data, we require probabilistic models for the appearance of terrain features and the relationship between the orientation of surface normals and the radar reflectance. We show that the SAR data can be modeled using a Rayleigh-Bessel distribution and use this distribution to develop a maximum likelihood algorithm for detecting and labeling terrain edge features. Moreover, we show how robust statistics can be used to estimate the characteristic parameters of this distribution. We also develop an empirical model for the SAR reflectance function. Using the reflectance model, we perform Lambertian correction so that a conventional SFS algorithm can be applied to the radar data. The initial surface normal direction is constrained to point in the direction of the nearest ridge or ravine feature. Each surface normal must fall within a conical envelope whose axis is in the direction of the radar illuminant. The extent of the envelope depends on the corrected radar reflectance and the variance of the radar signal statistics. We explore various ways of smoothing the field of surface normals using robust statistics. Finally, we show how to reconstruct the terrain surface from the smoothed field of surface normal vectors. The proposed algorithm is applied to various SAR data sets containing relatively complex terrain structure
- …