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Abstract—In this paper, we use the Maxwell-Boltzmann partition

function to compute network entropy. The partition function

is used to model the energy level population statistics where

the network is in thermodynamic equilibrium with a heat-

bath. Here the network Hamiltonian operator defines a set of

energy levels occupied by particles in thermal equilibrium. These

energy levels are given by the eigenvalues of the normalized

Laplacian matrix. In other words, we investigate a thermalised

version of the system normally studied in spectral graph theory,

where the thermalisation accounts for noise in the system. We

provide a systematic study of the entropy resulting from this

characterization. Compared to previous work based on using

von Neumann network entropy, this thermodynamic quantity

is effective in characterizing changes of network structure and

distinguishing different types of network models (e.g. Erdős-

Rényi random graphs, small world networks, and scale free

networks). Numerical experiments on real world data-sets are

presented to evaluate the qualitative and quantitative differences

in performance.

1. Introduction

There has been a considerable amount of work aimed
at developing effective characterizations of complex network
structure. Broadly speaking, two approaches have been used
to solve the problem of characterizing variations in network
structure and evolution over time. The first approach is based
on the application of graph-spectral techniques, while the
second is to capture uncertainties using statistics or probability
[1], [2], [3]. Most of the available characterizations have
centred around ways of capturing network substructure using
clusters, hubs and communities [1], [2], [3]. The underlying
representations are usually based on simple degree statistics
which capture the network connectivity structure [4], [5].
Although these available methods are goal directed, one po-
tentially promising approach is to draw on ideas from classical
and quantum statistical physical models of network systems.

For instance, the Boltzmann distribution from classical
statistical mechanics has been used to quantify network prop-
erties [1], [3]. This method maximizes the ensemble entropy
in exponential random graphs to predict their time-evolution
[3]. Physical models from statistical mechanics can also pro-
vide robust tools for characterizing the differences between
different classes of complex network structures [2]. Using
a heat reservoir analogy from thermodynamics, microscopic

measures of communicability and balance in networks can be
defined [1]. Although these physical analogies are useful, there
is no easy way to link directly the physically-based statistical
mechanics to the graph spectral representation of networks.

On the other hand, a thermodynamic analogy based on the
heat bath provides a convenient route to derive network char-
acterizations from the physical properties. The energy states
can be generated if the Hamiltonian operator is equated with a
suitably defined matrix representation of the network. In this
case the eigenvalues of the matrix are the energy eigenvalues.
In the heat-bath analogy these energy states are populated by
particles subject to thermal equilibrium. The network reaches
thermal equilibrium with the heat bath, and this determines
how many particles occupy at each state. If the particles
behave in a classical way, i.e. they are distinguishable, then as
a result of this thermalisation, these particles will occupy at the
Laplacian eigenstates according to the Boltzmann distribution
[1], [6].

Formally, a partition function for this type of system is
helpful, since it provides a computational link between the
microscopic properties of the energy states and the macro-
scopic properties of the network. To compute the partition
function requires a Hamiltonian operator for the network.
Usually, the network Hamiltonian derives from the adjacency
or Laplacian matrix of the network, but recently, Ye et al. [6],
have shown how the partition function can be computed from
a characteristic polynomial instead.

Furthermore, the partition function provides a natural start-
ing point in describing the network statistics and evolution,
from which thermodynamic characterizations of the network
can then be derived [6], [8]. By specifying the microstates of
the network system, statistical characterizations can succinctly
provide deep insights into network behavior. In this paper,
we use the Maxwell-Boltzmann partition function to describe
the thermalisation of the normalized Laplacian eigenstates of
the network. From this model we compute global network
characteristics, including the entropy, from the graph spectra.

2. Graph Representation

Let G(V,E) be an undirected graph with node set V and
edge set E ⊆ V × V , and let N = |V | represent the total
number of nodes on graph G(V,E). The adjacency matrix A
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of a graph is defined as

A =

{

0 if (u, v) ∈ E

1 otherwise.
(1)

Then the degree of node u is du =
∑

v∈V Auv . The
Laplacian matrix of a graph G is L = D − A and D
denotes the degree diagonal matrix whose elements are given
by D(u, u) = du and zeros elsewhere.

The normalized Laplacian matrix L̃ is defined as

L̃ = D− 1

2LD
1

2 (2)

where the element-wise expression of L̃ is

L̃uv =











1 if u = v and du 6= 0

− 1√
dudv

if u 6= v and (u, v) ∈ E

0 otherwise.

(3)

2.1. Hamiltonian Operator of a Graph

In quantum mechanics, the Hamiltonian operator is the
sum of the kinetic energy and potential energy of all the
particles in the system. It describes the particle propagate
according to the Schrödinger equation. The Hamiltonian is
given by

Ĥ = −∇2 + U(r, t) (4)

There are number of ways to define the Hamiltonian
operator of a graph. If the eigenvalues of graph with the
Laplacian matrix can be viewed as the energy eigenstates, we
then take the kinetic energy operator −∇2 to be the negative

of the normalized adjacency matrix, i.e. −Ã, and the potential
energy U(r, t) to be the identity matrix I . The Hamiltonian
operator is viewed as the normalized form of Laplacian matrix
on graph.

Ĥ = I − Ã = L̃ (5)

2.2. Network Thermodynamic Representation

A network can be viewed as a canonical ensemble, which
exchanges energy with a heat reservoir. The underpinning
idea is that statistical thermodynamics can be combined with
network theory to characterize both static and dynamic net-
works [8]. In general the energy and entropy of the network
depend on the assumptions concerning the Hamiltonian and
the corresponding partition function.

Here we consider the network as a thermodynamic system
specified by particles with the energy states given by the
Hamiltonian operator. The network is immersed in a heat bath
with temperature parameter T . Then the partition function
Z(β,N) can be used to represent the network ensemble,
where β = 1/kBT and kB is the Boltzmann constant. The
thermodynamics variables can be computed from the partition
function. Specified in this way, we briefly review various ther-
modynamic characterizations of the network, i.e. Helmholtz
free energy, entropy, average energy, associated with partition
function.

The average energy of the network can be expressed in
terms of the Hamiltonian operator,

U = 〈H〉 = kBT
2

[

∂

∂T
logZ

]

N

=

[

−
∂

∂β
logZ

]

N

(6)

Then, the Helmholtz free energy is given by

F (β,N) = −
1

β
logZ(β,N) = −kBT logZ(β,N) (7)

and the thermodynamic entropy by

S = kB

[

∂

∂T
T logZ

]

N

= kB

[

logZ + β 〈U〉

]

N

(8)

The Helmholtz free energy may thus also be expressed in
terms of the average particle energy 〈U〉, together with the
entropy S and temperature T

F = 〈U〉 − TS (9)

As a result the temperature is given by

T =

(

∂U

∂S

)

N

=
1

kBβ
(10)

2.3. Maxwell-Boltzmann Statistics

In statistical mechanics, the Maxwell-Boltzmann distribu-
tion relates the thermodynamic properties of particles from the
microscopic perspective [13]. It applies to systems consisting
of a fixed number of weakly interacting distinguishable parti-
cles. These particles occupy the energy states associated with
a Hamiltonian [3].

Taking the Hamiltonian of the network to be the nor-
malized Laplacian matrix, for Maxwell-Boltzmann occupation
statistics in energy states, the canonical partition function is

Z
MB

= Tr

[

exp(L̃)N
]

=

(

V
∑

i=1

eβεi

)N

(11)

where β = 1/kBT is the reciprocal of the temperature T
with kB as the Boltzmann constant; N is the total number of
particles and εi denotes the microscopic energy of system at
each microstate i.

Furthermore, derived from Eq.(6), the average energy of
the network is

〈U〉
MB

= −
∂ logZ

∂β

= N
Tr[L̃ exp(−βL̃)]

Tr[exp(−βL̃)]
= N

∑V

i=1
εie

−βεi

∑V

i=1
e−βεi

(12)

and similarly from Eq.(8), the corresponding entropy of the
system with N particles is

S
MB

= logZ − β
∂ logZ

∂β

= −N

Tr

{

exp(−βL̃) log[exp(−βL̃)]

}

Tr[exp(−βL̃)]

= −N

V
∑

i=1

e−βεi

∑V

i=1
e−βεi

log
e−βεi

∑V

i=1
e−βεi

(13)
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3. Experiments and Evaluations

We now explore whether the thermodynamic characteriza-
tions derived from the Maxwell-Boltzmann distribution, and
in particular the entropy, can be employed as a useful tool for
better understanding the structural properties of networks.

We commence by generating Erdős-Rényi random graphs,
small world networks, and scale free networks, which repre-
sent the most three widely used models of network structure.
Then, we turn our attention to a number of real world time-
evolving networks to detect abrupt changes in network struc-
ture at different time epochs. Finally, this entropy method is
applied to tumor mutation networks in order to distinguish the
network structures corresponding to various types of cancers.
To simplify the calculations, we fix the number of particle and
set the Boltzmann constant to unity.

3.1. Data Sets

Here, we show three different data sets: the first one is
synthetically generated artificial networks, while the remaining
are extracted from real-world complex systems.

Data set 1: It contains 90 graphs which are randomly
generated according to one of three different complex net-
work models, namely, a) the classical Erdős-Rényi random
graph model, b) the small-world model introduced by Watts
and Strogatz [5], and c) the scale-free model developed by
Barabási-Albert [14]. These are created using a variety of
model parameters with graph size between 100 to 1,000. For
small world networks, they are generated from Watts-Strogatz
model [5] with rewiring probability p = 0.2 and average
node degree n = 20. The scale free networks are derived
from Barabási-Albert model [14] with preferential attachment
m = 10 at each growing step.

Data set 2: The NYSE stock market database consists
of daily prices of 3,799 stocks traded on the New York Stock
Exchange [15]. A bunch of 347 stocks is selected from this
data set, which contains the historical stock price from January
1986 to February 2011. The correlation based network is
employed to represent the structure of the stock market. The
time window of 20 days is applied to compute the cross
correlation coefficients between the time-series for each pair
of stock. Then the connections are created with a threshold
ξ = 0.85.

Data set 3: The tumor mutation data contains three
major cancers cataloged in the Cancer Genome Atlas (TCGA),
namely a) ovarian, b) uterine and c) lung adenocarcinoma
[16]. There are 356 patients with mutations in 9,850 genes
for the TCGA ovarian cohort, 248 patients with mutations
in 17,968 genes for the TCGA uterine endometrial cohort
and 381 patients with mutations in 15,967 genes in the
TCGA lung adenocarcinoma cohort [18]. Patient mutation
networks were mapped onto gene interaction networks from
PathwayCommons, which aggregates interactions from sev-
eral pathway and interaction databases, focused primarily on
physical protein-protein interactions (PPIs) and functional re-
lationships between genes in canonical regulatory, signaling
and metabolic pathways [17].

3.2. Simulation Results

We first investigate the thermodynamic entropy of artificial
networks generated from three widely used models of complex
network, namely the Erdős-Rényi random graph, the small-
world Watts-Strogatz model [5] and the scale-free Barabási-
Albert model [14]. These models provide a basis for analysing
the statistical properties of different classes of complex net-
works. Here, we conduct numerical experiments to evaluate
whether the Maxwell-Boltzmann entropy can distinguish dif-
ferences in the structure and topology in different classes of
the synthetic networks.
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Figure 1. Maxwell-Boltzmann versus temperature. The red line represents
Erdős-Rényi random graphs, the blue line small-world networks and the green
line scale-free networks.

Fig.1 shows the average Maxwell-Boltzmann entropy and
its standard deviation versus temperature for the three dif-
ferent classes of networks. The common feature is that for
all three models the entropy increases monotonically with the
temperature. At high temperatures, it is hard to distinguish
different network structures. But at the temperature range
between 0.07 to 0.12, the Maxwell-Boltzmann entropy clearly
separates these three network models.
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Figure 2. Histograms of Maxwell-Boltzmann entropy for three different
synthetic networks. Each size of graph is randomly generated between
100 ∼ 1000 with temperature β = 10.

In order to better visualise these data, in Fig.2, we show
histograms of Maxwell-Boltzmann entropy for data gener-
ated from the three different network models. The differently
colored histogram represent the different network structures
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(Erdős-Rényi, Watts-Stogatz and Barabási-Albert). It is clear
that the Maxwell-Boltzmann entropy gives a good separation
for the three kinds of network models.

Here, the experiments in this section show that the
Maxwell-Boltzmann entropy can be efficiently used to distin-
guish different synthetic artificial networks. The main reason is
that it captures differences in structural features of the distinct
networks.

3.3. Experimental Results

Now we turn our attention to real-world networks, with the
aim of establishing whether the Maxwell-Boltzmann entropy
can be used to characterize the changes of network struc-
tures in time series and also distinguish different classes of
networks. The data used here come from the financial and
oncology domains.

Fig.3 shows the Maxwell-Boltzmann entropy for the
NYSE times series data. The figure is annotated to indicate
the positions of significant financial events such as Black
Monday, Friday the 13th mini-crash, Early 1990s Recession,
1997 Asian Crisis, 9.11 Attacks, Downturn of 2002-2003,
2007 Financial Crisis, the Bankruptcy of Lehman Brothers and
the European Debt Crisis. In each case, the entropy undergoes
significant fluctuation associated with dramatic changes in
network structure.

A good example is the downturn of 2002-2003. After the
9.11 attacks, investors became nervous about the prospect of
terrorism affecting the United States economy. Following the
subsequent collapse of many internet companies, numerous
large corporations were forced to restate earnings and in-
vestor confidence suffered. This considerably altered the inter-
relationships among stocks and resulted in significant variance
in the structure of the entire market.

Next we explore whether the Maxwell-Boltzmann entropy
can distinguish the tumor mutation networks for different types
of cancers, i.e. the three major cancers cataloged in somatic
mutation genes in Data set 3, which contains data for 356
ovarian cancer patients, 248 uterine cancer patients and 381
lung adenocarcinoma patients.
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Figure 7. Histogram of Maxwell-Boltzmann entropy (β = 10) for three
classes of tumor mutation networks (ovarian, uterine and lung adenocarci-
noma).

In Fig.7, it shows the histogram of the Maxwell-Boltzmann
entropy, together with the thresholds used to separate the three

classes. The three different types of tumor networks span
different entropy intervals, and can be separated using two
entropy thresholds. The uterine and ovarian classes are best
separated by an entropy threshold 2.92, which gives classi-
fication accuracies 33.87% and 83.71% for the two classes
respectively. The ovarian and lung adenocarcinoma classes can
similarly be best separated using an entropy threshold of 4.38,
which gives classification accuracies of 83.71% and 78.48%
respectively.

Here we conduct an exhaustive search for the two thresh-
olds, with the objective of maximising the aggregate classifi-
cation accuracy. This result empirically implies that although
there exists a potential improvement in classification accuracy,
the Maxwell-Boltzmann entropy can provide a useful unary
feature for class separation.

Overall, the Maxwell-Boltzmann entropy resulting from
classical energy level occupation statistics is able to reflect the
structural properties of different networks. It also gives a better
performance in distinguishing different network structures.
This observation confirms that the thermodynamic characteri-
zation, especially entropy, is not only effective in the financial
domain, but also provides some useful insights to analyze
oncological data.

3.4. Evaluation

Now we compare the performance of the Maxwell-
Boltzmann to the von Neumann entropies for a number
of classification problems. We perform this analysis for
both synthetic graphs i.e. the three models of complex net-
works (Erdős-Rényi random graphs, smalll-world networks
and scale-free networks), and the cancer mutation data. Both
data-sets are challenging since their overlap distribution of
entropy for the different classes of graphs.

Because the classes in the data are severely in terms of the
entropy, our approach applies the discriminant analysis classi-
fier for the entropy to extract clusters, and then by identifying
the modal cluster for each group and computing the classi-
fication accuracy. Table 1 and Table 2 summarize the results
obtained using the Maxell-Boltzmann and von-Neumann en-
tropies. For the synthetic graphs data the Maxwell-Boltzmann
entropy outperforms the von-Neumann entropy on all classes
of data presented by a margin of about 30%. In the cancer
mutation data, the Maxwell-Boltzmann entropy performs best,
except for the uterine cancer class.

Figure 4 compares the Maxwell-Boltzmann and von Neu-
mann entropies for the financial time series data. Here the
Maxwell-Boltzmann entropy reveals more fine structure in
the times series. For instance, the early 1990s recession, the
1997 Asian crisis, the 9.11 attacks, the downturn of 2002-2003
and the 2007 financial crisis are all revealed by the Maxwell-
Boltzmann entropy but not by the von Neumann entropy.

Another important parameter to discuss is the temperature.
Low and high temperature will cause different situation in
entropic representation. To evaluate the temperature effect on
the financial data, we increase or decrease temperature leaving
the number of particle unchanged. Fig.5 and Fig. 6 compare
the high (β = 0.2) and low (β = 20) temperature situation in
NYSE. As shown in the figures, both entropies in high and
low temperature do not performance well in characterizing
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Figure 3. Maxwell-Boltzmann entropy for NYSE (1987-2011). Particle number N = 5, and temperature β = 7. Critical financial events, i.e., Black Monday,
Friday the 13th mini-crash, Early 1990s Recession, 1997 Asian Crisis, 9.11 Attacks, Downturn of 2002-2003, 2007 Financial Crisis, the Bankruptcy of Lehman
Brothers and the European Debt Crisis, all appear as distinct events.
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Friday the 13th mini-crash, Early 1990s Recession, 1997 Asian Crisis, 9.11 Attacks, Downturn of 2002-2003, 2007 Financial Crisis.
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Figure 5. The high temperature situation in Maxwell-Boltzmann entropy for NYSE. Particle number N = 5, and temperature β = 0.2. Similar to the von
Neumann entropy, which reduces the performance to identify critical financial events.
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Figure 6. The low temperature situation in Maxwell-Boltzmann entropy for NYSE. Particle number N = 5, and temperature β = 20. It is difficult to indicate
financial events.
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TABLE 1. COMPARISON OF CLASSIFICATION ACCURACY FOR THREE SYNTHETIC NETWORK MODELS WITH ENTROPY FROM MAXWELL-BOLTZMANN

STATISTICS AND VON-NEUMANN ENTROPY (PARTICLE NUMBER N = 1, TEMPERATURE β = 10)

Classification Accuracy Random Graphs Scale Free Networks Small World Networks

Maxwell-Boltzmann Statistics 100% (30/30) 83.33% (25/30) 83.33% (25/30)
von-Neumann Entropy 60.00% (18/30) 56.67% (17/30) 66.67% (20/30)

TABLE 2. COMPARISON OF CLASSIFICATION ACCURACY FOR TUMOR NETWORKS WITH ENTROPY FROM MAXWELL-BOLTZMANN STATISTICS AND

VON-NEUMANN ENTROPY (PARTICLE NUMBER N = 1, TEMPERATURE β = 10)

Classification Accuracy Uterine Cancer Ovarian Cancer Lung Adenocarcinoma

Maxwell-Boltzmann Statistics 33.87% (84/248) 83.71% (312/372) 78.48% (300/381)
von-Neumann Entropy 56.85% (141/248) 69.89% (260/372) 64.83% (247/381)

network structure. The high temperature is similar to von-
Neumann entropy, which leads to the distinction so small that
many important financial events are disappearing. The low
temperature causes the unstable variance in entropy, which
is difficult to identify critical events. The same phenomenon
is observed in synthetic and real-world tumor networks. As
shown in Fig.8, both high and low temperature cases reduce
the classification accuracy in network structure distinction.
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Figure 8. The classification accuracy of Maxwell-Boltzmann entropy changes
with temperature for synthetic networks and real-world tumor mutation net-
works.

4. Conclusion

This paper explores the thermodynamic characterizations
of a network resulting from the Maxwell-Boltzmann partition
function, and specifically associated with the thermalisation
effects of heat bath on the energy level occupation statistics.
We have viewed the normalized Laplacian matrix as the
Hamiltonian operator of the network with associated energy
states which can be occupied by a system with distinguishable
particles. We compute the thermodynamic entropy when the
particle system is in thermodynamic equilibrium with a heat
bath, and the energy states are occupied according to the
Maxwell-Boltzmann distribution. We evaluate the resulting
entropy as a tool for distinguishing different types of network
structures in both static and time series data. These experi-
ments demonstrate that thermodynamic entropy can be used
to characterize the changes of network structure with time,
and distinguish different types of network models (Erdős-
Rényi random graphs, small world networks, and scale free

networks). Future work will focus on exploring non-classical
alternatives to the Maxwell-Boltzmann occupation statistics.
These include Bose-Einstein and Fermi-Dirac statistics, which
apply to systems of indistinguishable bosons and fermions.
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