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Correspondence Matching
with Modal Clusters

Marco Carcassoni, Member, IEEE, and
Edwin R. Hancock, Member, IEEE

Abstract—The modal correspondence method of Shapiro and Brady aims to

match point-sets by comparing the eigenvectors of a pairwise point proximity

matrix. Although elegant by means of its matrix representation, the method is

notoriously susceptible to differences in the relational structure of the point-sets

under consideration. In this paper, we demonstrate how the method can be

rendered robust to structural differences by adopting a hierarchical approach. To

do this, we place the modal matching problem in a probabilistic setting in which the

correspondences between pairwise clusters can be used to constrain the

individual point correspondences. We demonstrate the utility of the method on a

number of synthetic and real-world point-pattern matching problems.

Index Terms—Point-pattern matching, spectral graph theory, robust statistics,

hierarchy.

�

1 INTRODUCTION

THE graph spectral analysis of proximity data has proven to be an
alluring yet elusive method for the tasks of correspondence
matching and object recognition in computer vision. Stated simply,
the aim is to find the pattern of correspondence matches between
two sets of objects using the eigenvectors of an adjacency matrix or
an attribute proximity matrix. The problem draws on spectral
graph theory [3] and has been extensively studied for both the
abstract problem of graph-matching [19], [16], and for point pattern
matching [15], [14]. For instance, Umeyama [19] has developed an
eigendecomposition method for exact graph-matching. In related
work, Sossa and Horaud [17] have used spectral methods for the
recognition of line-drawings using immanantal polynomials for the
Laplacian matrix. There have also been a number of attempts to
use spectral methods for point-set matching. Scott and Longuet-
Higgins [14] align point-sets by performing singular value
decomposition on a point association weight matrix. This method
has recently been extended by Pilu [12] who includes neighbor-
hood intensity correlation information into the association weight
calculation. To overcome problems with the Scott and Longuet-
Higgins method for large rotation angles, Shapiro and Brady [15]
have reported a correspondence method which relies on measur-
ing the similarity of the eigenvectors of a Gaussian point-proximity
matrix. Provided that the point-sets are of the same size, then the
correspondences delivered by the Shapiro and Brady method are
relatively robust to random point jitter and to affine rotations and
scaling. More recent work on the spectral analysis of point-sets
includes that of Sclaroff and Pentland [13] and Cootes et al. [4],
both of which aim to develop deformable models of shape.

One of the limitations with spectral methods is that they are
particularly susceptible to the effect of size difference and structural
error. In other words, spectral graph theory can furnish very
efficient methods for characterizing exact relational structures, but
soon breaks down when there are spurious nodes and edges in the
graphs under study. In recent work, Luo and Hancock [9] have
attempted to overcome these problems for the graph-matching

problem. They have shown how the Umeyama algorithm can be
rendered robust to size differences and structural differences in the
edge-sets by using the statistical apparatus of the EM algorithm. It is
alsoworth noting, that the EMalgorithmhas been used by a number
of other authors for both rigid and nonrigid point-set matching. For
instance, Cross and Hancock [5] show how relational constraints
may be embedded in the algorithm and exploited to improve the
accuracy of alignment and, hence, reduce correspondence errors.
Chui and Rangarajan [2] have used deterministic annealing to
control the certainty of the correspondence probabilities. However,
neither of these two pieces of work uses graph-spectral information.
Finally, in a recent paper [1], we have taken some steps toward
improving the robustness of the Shapiro and Brady [15] method to
point position movement, and have overcome the problems of
structural error by resorting to an explicit alignment process based
on the EM algorithm.

In this paper, we take this work one step further by focusing on
how the correspondence process can be rendered robust to
structural differences in the point-sets without the need for explicit
alignment. We adopt a hierarchical approach to the correspon-
dence problem. The method is based on the observation that the
modes of the proximity matrix can be viewed as pairwise clusters.
Rather than explicitly grouping the points prior to matching, here
we aim to characterize the potential groupings in an implicit or
probabilistic way and to exploit their arrangement to provide
constraints on the pattern of correspondences. The hierarchy hence
consists of two levels: At coarse detail, or high level, we perform
modal analysis to find point cluster center correspondences. At
fine detail, or low level, we use the cluster center correspondences
to constrain the individual point correspondences. Hence, our
method is only applicable to point sets which have a reasonably
well-defined cluster structure. The probabilities used to model the
correspondence process are chosen heuristically rather then being
modeled from first principals using an error propagation analysis
for the components of the eigenvectors. Although this represents a
shortcoming, the empirical results obtained are encouraging.

2 BACKGROUND

In this section, we review the Shapiro and Brady method for the
modal matching of point-sets and detail the main conclusions of
our own recent work aimed at improving the method through a
better choice of proximity matrix weighting function and a more
sophisticated means of comparing the modal coefficients [1].

We are interested in finding the correspondences between two
point-sets, a model point-set z, and a data point-set w. Each point in
the image data set is represented by a coordinate vector
wi ¼ ðxi; yiÞ

T , where i is the point index. In the interests of brevity,
we will denote the entire set of image points by w ¼ fwi;8i 2 Dg,
where D is the point index-set. The corresponding fiducial points
constituting themodel are similarly represented by z ¼ fzj;8j 2 Mg,
where M denotes the index-set for the model feature-points zj.

In Shapiro and Brady’s original work, the weighting function
was the Gaussian [15]. If i and i0 are two data points, then the
corresponding element of the proximity matrix is given by

HDði; i
0Þ ¼ exp

�

�
1

2s2
jj~ww

ðnÞ
i � ~ww

ðnÞ
i0 jj2

�

; ð1Þ

where s is the width of kernel. However, in our recent paper, we
have shown that alternatives to this weighting function suggested
by the robust statistics literature offer better performance. In robust
statistics, the weight (or influence function) Hð�Þ may be obtained
from a potential function (or error kernel) �ð�Þ via the relationship
Hð�Þ ¼ 1

�

dHð�Þ
d�

, where � is the error residual. There are many
concrete examples for the weight and potential functions, includ-
ing Tukey’s biweight, Huber’s error kernel, and Li’s adaptive
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penalty functions. However, one of the most effective and flexible

alternatives is the weight function that results from Green’s

potential function �ð�Þ ¼ s
�
log cosh ��

s
[7]. The function was used

to generate a Markov prior for the purposes of Bayesian

reconstruction of tomographic images. The log cosh function was

adopted by Green since it is flexible and can approximate both the

Gaussian and the linear potential function for suitable choices of s;

it may also be approximated by a piecewise polynomial and is

hence related to the Huber kernel. Moreover, the potential function
gives a convex energy. The weighting function corresponding to

Green’s potential is

HDði; i
0Þ ¼

1

jj~ww
ðnÞ
i � ~ww

ðnÞ
i0 jj

tanh

�

�

s
jj~ww

ðnÞ
i � ~ww

ðnÞ
i0 jj

�

: ð2Þ

The two weighting functions given in (1) and (2) are compared in
Fig. 1. One of the conclusions of our recent study was that the
tanh function gives a significant improvement in the fraction of
correct correspondences when the point-set is subjected to Gaussian
position error. However, both give poorer performance under point
position jitter than a weighting function that is either piecewise
Euclidean or a reciprocal (i.e., one for which the derivative of the
potential function is increasing). For structural error, the tanh is
better than both of these alternatives and is also easier to control.

The second contribution in our recent study [1] was to suggest an

improved means of using the eigenvectors of the proximity matrix
to compute correspondences for point-sets that are subject to jitter

but are free from structural error. Consider the proximity matrixHD

for the set of data-points. Suppose that �Dl is the lth eigenvalue of the

matrixHD and that �Dl is the corresponding eigenvector. The modal

structure of the point-sets is found by solving the eigenvalue

equation jHD � �Ij ¼ 0 and the associated eigenvector equation

HD�
D
l ¼ �Dl �

D
l .

Suppose that the suffixof theeigenvectors refers to themagnitude

order of the eigenvalues, i.e., �D1 � �D2 � �D3 � . . . , etc. We con-

catenate the eigenvectors in this order to construct a modal matrix

�D ¼

�

�D1 j�
D
2 j�

D
3 j . . .

�

:

The column index of this matrix refers to the order of the

eigenvalues while the row-index is the index of the original point-

set. This modal decomposition is repeated for the model point-set

to give a model-point modal matrix

�M ¼

�

�M1 j�M2 j . . . j�MjMj

�

:

Since the two point-sets are potentially of different size, we truncate

the modes of the larger point-set. This corresponds to removing the

last jjDj � jMjj rows and columns of the larger matrix. The

resulting matrix has o ¼ minfj D j; j M jg rows and columns.
Based on the coefficients of the modal matrices �M and �D,

we aim to find correspondences between points. To this, we

compute the probability �i;j that the node i 2 D matches to the
node j 2 M. The node i is placed in correspondence with node j
if j ¼ argmaxj�f�i;j�g. In the remainder of this section, we discuss
how the correspondence probabilities �i;j may be computed from
the coefficients of the modal matrices �D and �M .

Shapiro and Brady [15] find correspondences that minimize the
Euclidean distance between the rows of the model matrices �M

and �D. The correspondence probabilities are assigned according
to the binary rule

�i;j ¼
1 if j ¼ argminj0

Po
l¼1 jj�Dði; lÞ � �Mðj0; lÞjj2;

0 otherwise:

(

ð3Þ

To render the computation of correspondences robust to outlier
measurement error, we adopted an approach in which the
probabilities are computed on a component by component basis
over the eigenvectors so that large component differences con-
tribute insignificantly. The probability that node i is in correspon-
dence with node j is

�i;j ¼

Po
l¼1 exp

�

��jj�Dði; lÞ � �Mðj; lÞjj2
�

P

j02M

Po
l¼1 exp

�

��jj�Dði; lÞ � �Mðj0; lÞjj2
� : ð4Þ

3 MODAL CLUSTERS

These two refinements of the Shapiro and Brady method can
render the correspondence process robust to significant move-
ments in the point positions, but do not overcome problems
associated with the different size of the point-sets. However, the
correspondence probabilities proved useful for performing point-
set alignment using the EM algorithm [1]. The aim in this paper, on
the other hand, is to render the modal correspondence process
robust to differences in point-set size due to drop-out, occlusion, or
contamination. To achieve this goal, we adopt a hierarchical
approach. The idea is to use the eigenmodes of the proximity
matrix to identify pairwise clusters. Correspondence probabilities
computed from the cluster center proximity matrices are used to
constrain the individual point correspondences. Our clustering
process is based on an analysis of the eigenmodes of the point
proximity matrix. We use the coefficients of the first S columns of
the modal matrix �D to define the clusters. The set of points
belonging to the cluster indexed !d is

CD!d ¼

�

ij
j�Dði; !dÞj

PS
l¼1 j�Dði; lÞj

> T

�

; ð5Þ

where !d ¼ 1; . . .S and T is a cluster membership threshold which,
in practice, is set to be 0:95. Although we do not have room to
discus the sensitivity of the method to the choice of this parameter,
provided that it is set close to unity, the choice does not unduly
affect the performance of the correspondence method. The number
of clusters S may be chosen using the cumulative eigenvalue ratio

RS ¼

PS
i¼1 �

2
i

Po
i¼1 �

2
i

:

We choose S so that RS > 0:95, i.e., the clusters capture 95 percent
of the point-set position variance.

For the cluster indexed !d, the position-vector for the cluster
center is

cDðnÞ
!d

¼

PjDj
i¼1 j�

ðnÞ
D ði; !dÞjwi

PjDj
i¼1 j�

ðnÞ
D ði; !dÞj

: ð6Þ

From the cluster center positions associated with the S largest
eigenvalues, i.e., the first S columns of �D, we use the robust
weighting kernel to compute an S � S cluster center proximity
matrix
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G
ðnÞ
D ðl; l0Þ ¼

1

jjc
DðnÞ
l � c

DðnÞ
l0 jj

tanh

�

�

s
jjc

DðnÞ
l � c

DðnÞ
l0 jj

�

: ð7Þ

Our idea is to use the modes of the S � S cluster-center
proximity matrix GD for the purposes of matching. Accordingly,
we solve the equation detðGD � �DIÞ ¼ 0 to locate the eigenvalues
of the modal or cluster-center proximity matrix. The eigenvectors
 l, l ¼ 1; . . . ; S of the cluster-center proximity matrix are found by
solving the equation GD 

D
l ¼ �D

l  
D
l . As before, these eigenvectors

can be used to construct a modal-matrix for the cluster center
positions. The matrix has the eigenvectors of GD as columns, i.e.,

�D ¼

�

 D1 j 
D
2 j . . . j 

D
S

�

:

This procedure is repeated to construct a second S � S cluster-
center modal matrix �M for the set of model points z. Since the
principal modal-clusters are selected on the magnitude-order of
the associated eigenvalues, there is no need to reorder them.

For the points belonging to each cluster, we also construct a
within-cluster proximity matrix. To construct this matrix, we will
need to relabel the points using a cluster point index which runs
from 1 to jC!d j. Accordingly, we let �Di;!d denote the point-index
assigned to the node i in the cluster !d. The proximity matrix for
the points belonging to this cluster is denoted by F!D and the
corresponding modal matrix is �D

!d
. The modal matrix for the

cluster indexed !m in the model point-set is denoted by �M
!m
.

4 MATCHING

The aim in this paper is to explore whether the additional
information provided by the modal clusters can be used to
improve the robustness of the matching process to point addition
and dropout. We would like to compute the probability P ði$ jÞ,
that the data-point i 2 D is in correspondence with the model data-
point j 2 M. To do this, we construct amixture model over the set of
possible correspondences between the set of S modal clusters
extracted from the data point positions and the model point
positions. Suppose that !d and !m, respectively, represent labels
assigned to the modal clusters of the data and model point-sets.
Applying the Bayes formula, we can write

P ði$ jÞ ¼
X

S

!d¼1

X

S

!m¼1

P ði$ jj!d $ !mÞP ð!d $ !mÞ; ð8Þ

where P ði$ jj!d $ !mÞ represents the cluster-conditional prob-

ability that the node i belonging to the data-graph cluster !d is in

correspondence with the node j that belongs to the model-graph

cluster !m. The quantity P ð!d $ !mÞ denotes the probability that

the data point-set cluster indexed !d is in correspondence with the

model point-set cluster indexed !m.

4.1 Cluster Conditional Correspondence Probabilities

To compute the cluster-conditional point correspondence prob-

abilities, we use the modal structure of the within-cluster

proximity matrices. These correspondence probabilities are com-

puted using the method outlined in (4) since, as we will see later,

this proves to be the most effective of the alternatives. As a result,

we write

P ði$ jj!d $ !mÞ ¼

PO!d;!m

l¼1 exp

�

�kwjj�
D
!d
ð�Di;!d ; lÞ ��M

!m
ð�Dj!m ; lÞjj

2

�

P

j02M

PO!d;!m

l¼1 exp

�

�kwjj�D
!d
ð�Di;!d ; lÞ ��M

!m
ð�Mj0 ;!m ; lÞjj

2

� ;
ð9Þ

where O!d ;!m ¼ min½jC!m j; jC!d j� is the size of the smaller cluster.

4.2 Cluster Correspondence Probabilities

We have investigated two methods for computing the cluster
correspondence probabilities P ð!d $ !mÞ:

. Modal eigenvalues: The first method used to compute the
cluster-center correspondence probabilities relies on the
similarity of the normalized eigenvalues of the cluster-
center modal matrix. The probabilities are computed in the
following manner

P ð!d $ !mÞ ¼

exp

�

�ke

�

j�D!d
j

PS

!d¼1
j�D!d

j
�

j�M!m j
PS

!m¼1
j�M!m j

�2�

PS
!m¼1 exp

�

�ke

�

j�D!d
j

PS

!d¼1
j�D!d

j
�

j�M!m j
PS

!m¼1
j�M!m j

�2�
:

ð10Þ

. Modal coefficients: The cluster center correspondence
probabilities have also been computed by performing a
robust comparison of the coefficients of the modal matrices
of the cluster-center proximity matrix. This is simply an
application of the method outlined in (4) to the modal
coefficients of the between-cluster proximity matrix. We
therefore set

P ð!d $ !mÞ ¼

PS
L¼1 exp

�

�kbjj�Dð!d; LÞj � j�Mð!m; LÞjj
2

�

PS
!m¼1

PS
L¼1 exp

�

�kbjj�Dð!d; LÞj � j�Mð!m; LÞjj
2

� :
ð11Þ

In the above equations, km, kb, and ke are exponential constants.
Again, the choice of the value is not critical to the performance of
the method, and setting all three constants to 0:1 gave good results
in our experiments. There is clearly scope for developing a means
of estimating these three parameters from the statistics of the
interpoint distances and the intercluster distances.

5 EXPERIMENTS

In this section, we describe our experimental evaluation of the
new modal correspondence method. We commence with a
sensitivity study in which we compare the new correspondence
method with that of Shapiro and Brady [15] and the EM
alignment method outlined in our recent paper [1]. The Shapiro
and Brady method is based purely on modal correspondence
analysis, while the alignment method uses modal correspon-
dence probabilities to weight the estimation of affine alignment
parameters in a dual-step EM algorithm.

Our sensitivity study uses randomly generated point-sets. We
ensure that the point-sets have a clump structure by sampling the
point positions from six partially overlapping Gaussian distribu-
tions with controlled variance. We have then added both new
points at random positions and random point-jitter to the synthetic
data. The randomly inserted points have been sampled from a
uniform distribution. The positional jitter has been generated by
displacing the points from their original positions by Gaussian
measurement errors. The displacements have been randomly
sampled from a circularly symmetric Gaussian distribution of
zero mean and controlled standard deviation.

We commence by investigating the way in which the elements
of the point proximity matrix are calculated. The aim is to
determine which of the weighting functions returns correspon-
dences which are the most robust to point-position jitter alone.
Fig. 2 shows the fraction of correct correspondences as a function
of the standard deviation of the added Gaussian position errors.
The standard deviation is recorded as a fraction of the average
closest point distance. We compare the results obtained using the
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Gaussian weighting function (1) used by Shapiro and Brady and
the use of the tanh function given (2). The tanh weighting function
significantly outperforms the Gaussian weighting function. The
margin of improvement is about 20 percent.

In Fig. 3, we show the effect of increasing the number of
randomly added points. In this experiment, we commence with a
point-set of size 100. The plot shows the fraction of points correctly
matched as a function of the number of randomly added points.
The long-dashed curve, i.e., the one which gives the consistently
poorest performance, is the result of applying the Shapiro and
Brady algorithm. Here, the fraction of correct correspondences falls
below 25 percent once the fraction of added clutter exceeds
2 percent. The results obtained with the EM alignment method
described in [1] are shown as a line-dot curve. This method
performs best of all when the level of clutter is less than 20 percent.
The remaining two curves show the results obtained with the two
variants of our hierarchical correspondence algorithm detailed in
Section 4. In the case of the dotted curve, the cluster correspon-
dences are computed using only the modal coefficients of the
between-cluster proximity matrix as described in (11). The solid
curve shows the results obtained if the eigenvalues are also used as
described in (10). There is little to distinguish the two methods.
Both perform rather more poorly than the dual-step EM algorithm
when the level of clutter is less than 20 percent. However, for
larger clutter levels, they provide significantly better performance.
The additional use of the eigenvalues results in a slight improve-
ment in performance. Hence, the method reported in this paper
outperforms the EM algorithm reported in our previous work at
high levels of structural error.

Fig. 4 investigates the effect of positional jitter. Here, we plot the
fraction of correct correspondence matches as a function of the
standard deviation of the Gaussian position error added to the

point-positions. We report the level of jitter using the ratio of the
standard deviation of the Gaussian error distribution to the
average closest interpoint distance. Here, there is nothing to
distinguish the behavior of our hierarchical correspondence
method from the dual-step alignment method. In each case, the
fraction of correct correspondences degrades slowly with increas-
ing point-position jitter. However, even when the standard
deviation of the position errors is 50 percent of the average
minimum interpoint-distance, then the fraction of correct corre-
spondences is still greater than 50 percent. By contrast, the
accuracy of the Shapiro and Brady method falls below 50 percent
once the standard deviation of the positional error exceeds
10 percent of the minimum interpoint distance.

Our final set of experiments on synthetic data investigate the
effect of diluting the cluster-structure of the point-sets. Here, we
have gradually moved the cluster-centers closer together and have
investigated the effect on the fraction of correct correspondences
when there is structural error present. The results are shown in
Fig. 5. Here, we show the fraction of correct correspondences as a
function of the overlap between the clusters. We have also
included tests to show the performance of the algorithm when
20 percent of clutter noise is added to the overlapping clusters. The
results are shown as groups of bars. As we move from left to right
across the plot, the degree of cluster overlap increases. In each
group of bars, the leftmost (i.e., black) bar is the result obtained
with the new method reported in this paper when the clusters are
clutter-free, while the center (light gray) bar is the result obtained
when 20 percent of clutter is added. The right-most bar (i.e.,
midgray) is the result obtained with the Shapiro and Brady method
when the point-sets contain no clutter. It is important to stress that
as the clusters are moved together, larger “superclusters” may
develop due to merging. This effects the value of S used in our
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Fig. 2. Effect of weighting function on spectral correspondence in presence of

position error.

Fig. 3. Effect of spectral correspondence methods in presence of structural error.

Fig. 4. Effect of spectral correspondence methods in presence of position error.

Fig. 5. Cluster stability.



analysis and could, in principal, be detected using the quantity RS .
The performance of the Shapiro and Brady method is poorer than
the new method. Its sudden drop-off in performance is attributable
to the effect of increased point-density as the clusters are
overlapped. Obviously, the performance of the new method
degrades with the addition of clutter. However, the increased
proximity of the clusters does not appear to significantly degrade
performance.

We now turn our attention to real world data. Based on the

sensitivity study, we confine our attention to the case where 1) the

proximity matrix is as defined in (2), 2) the cluster center

calculation is as outlined in Section 3, and 3) the modal coefficient

probabilities are as described in (10). In the majority of our

experiments, we are concerned with matching corner-features. We

use the corner detector recently reported by Luo et al. [8] to extract

point features. Our first experiments are performed with the

CMU/VASC model-house sequence. The data set consists of a

series of views of a model house, collected as the viewing direction

changes. We match the first image of the sequence to each of the

subsequent nine frames. Some example results for the second, fifth,

and eighth frames are shown in the top row of Fig. 6. Here, the

lines between feature points represent correspondences. We have
compared the number of correct correspondences with ground-
truth obtained by hand labeling. Table 1 lists the fraction of correct
correspondences. This varies between 100 percent for the closest
pair of views to 76 percent for the most distant pair of views. We
have compared the results obtained with our new method with
those obtained using the Scott and Longuet-Higgins method. The
correspondences are shown in the bottom row of Fig. 6 and the
results are summarized in Table 1. Comparing the results of the
two methods, it is clear that the Scott and Longuet-Higgins method
gives poorer results when the difference in viewing angle is large.

We have repeated these experiments for a number of different
images. The first of these involves images from a gesture sequence
of a hand. The image used in this study is shown in Fig. 7. To
extract feature-points from this data, we commence by running the
Canny edge detector over the images to locate the boundary of the
hand. From this edge data, point features have been detected using
the corner detector of Mokhtarian and Suomela [10]. The raw
points returned by this method are distributed relatively uniformly
along the outer edge of the hand and are hence not suitable for
cluster analysis. We have therefore pruned the feature points using
a curvature criterion. We have removed all points for which the
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Fig. 6. Correspondences between the first image and subsequent images in the CMU house sequence using our new method (top row) and with the Scott and Longuett-
Higgins matching algorithm (bottom row).

TABLE 1
Performance on the CMU/VASC House Sequence, where the House “0” is Tested against the Remaining Nine

Fig. 7. Real data experimentation: Hierarchical correspondence method. Fig. 8. Real data experimentation: Shapiro and Brady’s correspondence method.



curvature of the outline is smaller than a heuristically set
threshold. Initially, there are some 800 feature points, but after
pruning, this number is reduced to 271. The pruned feature-points
are shown in blue in the figure. They are clustered around the
fingertips and the points at which the fingers join the hand. After
applying the clustering method, the set of centers shown in red is
obtained. There are 10 clusters in both images. The yellow lines
between the two images show the detected correspondences. The
fraction of correct correspondences is 81.2 percent. Fig. 8 shows the
correspondences obtained with the Scott and Longuet-Higgins
method. The results are poorer, and the fraction of correct
correspondences is 70 percent.

Our third real-world experiment involves a sequence of images

obtained as a subject rotates and tilts his head. The feature points

here are highly nonplanar. In Fig. 9, we show the correspondences

obtained. These are again good, and there appear to be no

systematic problems. Fig. 10 shows the results delivered by the

Scott and Longuet-Higgins method. From the pattern of corre-

spondence lines, it is clear that the method does not perform well.

A fourth example is shown in Fig. 11 where we show the results

obtained on an image pair from the roof-space of our lab. Here, the

correspondences are good despite the fact that there is no clear

cluster-structure. The feature sets contain a different number of

points and some of them appear in one image and not in the other.

The results represent an improvement over those obtained with the

Scott and Longuet-Higgins method in Fig. 12.

6 CONCLUSIONS

In this paper, we have investigated how the correspondence

method of Shapiro and Brady [15] may be improved by using the

modal coefficients of the point-proximity matrix to establish the

whereabouts of significant point groupings or clusters. We exploit

these groupings to develop a hierarchical correspondence method.

This is a two-step process: First, we use the spatial arrangements of

the center-points of the most significant groups to compute a

between-cluster proximity matrix. The modal coefficients of this

between-cluster proximity matrix are used to establish correspon-

dence probabilities between groups of points. Second, for each

group of points, we compute a within-cluster proximity matrix.

The modal coefficients of these within-cluster proximity matrices

are used to establish heuristic cluster-conditional point correspon-

dence probabilities. Using the Bayes rule, we combine these two

sets of probabilities to compute individual point correspondence

probabilities. We have shown that, while the Shapiro and Brady

method fails once more than a few percent of clutter is added, the

new method degrades more gracefully.
Although we have concentrated on point pattern matching in

this paper, some of the ideas presented are of more generic

usefulness. In particular, the idea of usingmodal or spectral clusters

to overcome problems of size difference may also prove useful for

the problem of inexact graph-matching [6], [20], [21], [11]. Hence, we

may have a route to improving the robustness of the Umeyama [19]

algorithm. Moreover, the methodology reported in this paper may

prove useful in improving the robustness of SVD-basedmethods for

motion analysis [18] and stereopsis [12] to structural difference.
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Fig. 9. Real data experimentation on tilting head: Hierarchical correspondence
method.

Fig. 10. Real data experimentation on tilting head: Shapiro and Brady’s
correspondence method.

Fig. 11. Real data experimentation on roof-space images: Hierarchical corre-
spondence method.

Fig. 12. Real data experimentation on roof-space images: Shapiro and Brady’s

correspondence method.
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The CMU Pose, Illumination, and
Expression Database

Terence Sim, Member, IEEE,
Simon Baker, and Maan Bsat

Abstract—In the Fall of 2000, we collected a database of more than 40,000 facial

images of 68 people. Using the Carnegie Mellon University 3D Room, we imaged

each person across 13 different poses, under 43 different illumination conditions,

and with four different expressions. We call this the CMU Pose, Illumination, and

Expression (PIE) database. We describe the imaging hardware, the collection

procedure, the organization of the images, several possible uses, and how to

obtain the database.

Index Terms—Face databases, pose, illumination, expression.
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1 INTRODUCTION

PEOPLE look very different depending on a number of factors.
Perhaps the three most significant factors are: 1) the pose, i.e., the
angle at which you look at them, 2) the illumination conditions at
the time, and 3) their facial expression, e.g., smiling, frowning, etc.
Although several other face databases exist with a large number of
subjects [8], and with significant pose and illumination variation
[2], we felt that there was still a need for a database consisting of a
fairly large number of subjects, each imaged a large number of
times, from several different poses, under significant illumination
variation, and with a variety of expressions.

Between October 2000 and December 2000, we collected such a

database consisting of more than 40,000 images of 68 subjects. (The

total size of the database is about 40 GB.) We call this the CMU

Pose, Illumination, and Expression (PIE) database. To obtain a

wide variation across pose, we used 13 cameras in the CMU 3D

Room [7]. To obtain significant illumination variation, we

augmented the 3D Room with a “flash system” similar to the

one constructed by Georghiades et al. at Yale University [2]. We

built a similar system with 21 flashes. Since we captured images

with and without background lighting, we obtained 21� 2þ 1 ¼

43 different illumination conditions. Furthermore, we asked the

subjects to pose with several different expressions.
In the remainder of this paper, we describe the capture

hardware, the organization of the images, a large number of

possible uses of the database, and how to obtain a copy of it.

2 CAPTURE APPARATUS

2.1 Setup of the Cameras: Pose

Obtaining images of a person from multiple poses requires either

multiple cameras capturing images simultaneously, or multiple

“shots” taken consecutively (or a combination of the two.) There

are a number of advantages of using multiple cameras: 1) the
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