5,925 research outputs found

    Measurement of thermal conductance of multilayer and other insulation materials Final report

    Get PDF
    Thermal conductance measurements of multilayer, aluminumized polymeric films for space suit insulation material

    Stellar Dynamics and the implications on the merger evolution in NGC6240

    Full text link
    We report near-infrared integral field spectroscopy of the luminous merging galaxy NGC 6240. Stellar velocities show that the two K-band peaks separated by 1.6arcsec are the central parts of inclined, rotating disk galaxies with equal mass bulges. The dynamical masses of the nuclei are much larger than the stellar mass derived from the K-band light, implying that the progenitor galaxies were galaxies with massive bulges. The K-band light is dominated by red supergiants formed in the two nuclei in starbursts, triggered ~2x10^7 years ago, possibly by the most recent perigalactic approach. Strong feedback effects of a superwind and supernovae are responsible for a short duration burst (~5x10^6 years) which is already decaying. The two galaxies form a prograde-retrograde rotating system and from the stellar velocity field it seems that one of the two interacting galaxies is subject to a prograde encounter. Between the stellar nuclei is a prominent peak of molecular gas (H_2, CO). The stellar velocity dispersion peaks there indicating that the gas has formed a local, self-gravitating concentration decoupled from the stellar gravitational potential. NGC 6240 has previously been reported to fit the paradigm of an elliptical galaxy formed through the merger of two galaxies. This was based on the near-infrared light distribution which follows a r^1/4-law. Our data cast strong doubt on this conclusion: the system is by far not relaxed, rotation plays an important role, as does self-gravitating gas, and the near-infrared light is dominated by young stars.Comment: 34 pages, 11 figures, using AASTEX 5.0rc3.1, paper submitted to the Astrophysical Journal, revised versio

    Rapid Oscillations in Cataclysmic Variables. XV. HT Camelopardalis (= RX J0757.0+6306)

    Full text link
    We present photometry and spectroscopy of HT Camelopardalis, a recently discovered X-ray-bright cataclysmic variable. The spectrum shows bright lines of H, He I, and He II, all moving with a period of 0.059712(1) d, which we interpret as the orbital period. The star's brightness varies with a strict period of 515.0592(2) s, and a mean full amplitude of 0.11 mag. These properties qualify it as a /bona fide/ DQ Herculis star (intermediate polar) -- in which the magnetism of the rapidly rotating white dwarf channels accretion flow to the surface. Normally at V=17.8, the star shows rare and very brief outbursts to V=12-13. We observed one in December 2001, and found that the 515 s pulse amplitude had increased by a factor of ~100 (in flux units). A transient orbital signal may also have appeared.Comment: PDF, 19 pages, 3 tables, 6 figures; accepted, in press, to appear June 2002, PASP; more info at http://cba.phys.columbia.edu

    On the secondary star of the cataclysmic variable 1RXS J094432.1+035738

    Get PDF
    We present V and Rc band photometry and optical near-infrared spectroscopy of the cataclysmic variable 1RXS J094432.1+035738. We detected features of a cool secondary star, which can be modeled with a red dwarf of spectral type M2 (+0.5 -1.0) V at a distance of 433 +- 100 pc.Comment: Accepted for publication in Astronomy and Astrophysic

    The Axial Anomaly in D=3+1 Light-Cone QED

    Get PDF
    We consider (3+1)(3+1)-dimensional, Dirac electrons of arbitrary mass, propagating in the presence of electric and magnetic fields which are both parallel to the x3x^3 axis. The magnetic field is constant in space and time whereas the electric field depends arbitrarily upon the light-cone time parameter x+=(x0+x3)/2x^+ = (x^0 + x^3)/\sqrt{2}. We present an explicit solution to the Heisenberg equations for the electron field operator in this background. The electric field results in the creation of electron-positron pairs. We compute the expectation values of the vector and axial vector currents in the presence of a state which is free vacuum at x+=0x^+ = 0. Both current conservation and the standard result for the axial vector anomaly are verified for the first time ever in (3+1)(3+1)-dimensional light-cone QED. An interesting feature of our operator solution is the fact that it depends in an essential way upon operators from the characteristic at x−=−Lx^- = -L, in addition to the usual dependence upon operators at x+=0x^+ = 0. This dependence survives even in the limit of infinite LL. Ignoring the x−x^- operators leads to a progressive loss of unitarity, to the violation of current conservation, to the loss of renormalizability, and to an incorrect result for the axial vector anomaly.Comment: 31 pages, LaTeX 2 epsilon, no figures, some typoes corrected for publicatio

    The Double Quasar Q2138-431: Lensing by a Dark Galaxy?

    Get PDF
    We report the discovery of a new gravitational lens candidate Q2138-431AB, comprising two quasar images at a redshift of 1.641 separated by 4.5 arcsecs. The spectra of the two images are very similar, and the redshifts agree to better than 115 km.sec−1^{-1}. The two images have magnitudes BJ=19.8B_J = 19.8 and BJ=21.0B_J = 21.0, and in spite of a deep search and image subtraction procedure, no lensing galaxy has been found with R<23.8R < 23.8. Modelling of the system configuration implies that the mass-to-light ratio of any lensing galaxy is likely to be around 1000M⊙/L⊙1000 M_{\odot}/L_{\odot}, with an absolute lower limit of 200M⊙/L⊙200 M_{\odot}/L_{\odot} for an Einstein-de Sitter universe. We conclude that the most likely explanation of the observations is gravitational lensing by a dark galaxy, although it is possible we are seeing a binary quasar.Comment: 17 pages (Latex), 8 postscript figures included, accepted by MNRA

    Simultaneous X-ray and Optical Observations of EX Hydrae

    Full text link
    The intermediate polar, EX Hydrae, was the object of a large simultaneous multiwavelength observational campaign during 2000 May - June. Here we present the Rossi X-ray Timing Explorer photometry and optical photometry and spectroscopy from ground-based observatories obtained as part of this campaign. Balmer line radial velocities and Doppler maps provide evidence for an extended bulge along the outer edge of the accretion disk and some form of extended/overflowing material originating from the hot spot. In addition, the optical binary eclipse possesses an extended egress shoulder, an indication that an additional source (other than the white dwarf) is coming out of eclipse. We also compare the X-ray and optical results with the results obtained from the EUV and UV observations from the multiwavelength data set.Comment: to appear in the Astronomical Journal, April 200

    A New Strategy for Deep Wide-Field High Resolution Optical Imaging

    Get PDF
    We propose a new strategy for obtaining enhanced resolution (FWHM = 0.12 arcsec) deep optical images over a wide field of view. As is well known, this type of image quality can be obtained in principle simply by fast guiding on a small (D = 1.5m) telescope at a good site, but only for target objects which lie within a limited angular distance of a suitably bright guide star. For high altitude turbulence this 'isokinetic angle' is approximately 1 arcminute. With a 1 degree field say one would need to track and correct the motions of thousands of isokinetic patches, yet there are typically too few sufficiently bright guide stars to provide the necessary guiding information. Our proposed solution to these problems has two novel features. The first is to use orthogonal transfer charge-coupled device (OTCCD) technology to effectively implement a wide field 'rubber focal plane' detector composed of an array of cells which can be guided independently. The second is to combine measured motions of a set of guide stars made with an array of telescopes to provide the extra information needed to fully determine the deflection field. We discuss the performance, feasibility and design constraints on a system which would provide the collecting area equivalent to a single 9m telescope, a 1 degree square field and 0.12 arcsec FWHM image quality.Comment: 46 pages, 22 figures, submitted to PASP, a version with higher resolution images and other supplementary material can be found at http://www.ifa.hawaii.edu/~kaiser/wfhr

    On the thermodynamics of the Swift–Hohenberg theory

    Get PDF
    We present the microbalance including the microforces, the first- and second-order microstresses for the Swift–Hohenberg equation concomitantly with their constitutive equations, which are consistent with the free-energy imbalance. We provide an explicit form for the microstress structure for a free-energy functional endowed with second-order spatial derivatives. Additionally, we generalize the Swift–Hohenberg theory via a proper constitutive process. Finally, we present one highly resolved three-dimensional numerical simulation to demonstrate the particular form of the resulting microstresses and their interactions in the evolution of the Swift–Hohenberg equation
    • 

    corecore