22,639 research outputs found
A study of the applicability of nucleation theory to quasi-thermodynamic transformations of second and higher Ehrenfest-order
Transient and steady-state phenomena in temperature, stress, and electric, field intensity in ferroelectric polymers were investigated. The application and extension of the theory in the primary stage to the polarization domain nucleation and growth in ferroelectric polymers were developed. The kinetics of this growth were investigated. Expressions describing nucleation under the influence of an electric field were found through the expansion of the Gibbs' free energy in a Maclaurin series. The series was expanded in the electric field strength rather than the degree of undercooling. The resulting expressions were manipulated and applied to the case of nucleation of polarized domains in ferroelectric polymers. The kinetics of the nucleation and growth of polarized domains are also investigated. This was accomplished through the modification of the Johnson-Mehl-Avrami treatment of crystallization kinetics to be applicable to the growth of polarization domains in ferroelectric materials
A study of the applicability of nucleation theory to quasi-thermodynamic transitions of second and higher Ehrenfest-order, supplement 3
The work includes an investigation of the applicability of the nucleation theory to second and higher order thermodynamic transitions in the Ehrenfest sense, and a number of significant conclusions relevant to first order transitions, as well. The underlying theoretical method consisted of expanding the Gibbs' free energy in a Maclarin or Taylor series and then using fundamental thermodynamic determinable quantities, and interpreting the results. Work was performed on the existence and interpretation of an interfacial energy between phases in a second order transition in addition to an investigation of the solid-liquid interfacial energy for various polymers. Extensive considerations were devoted to various aspects of a particular polymer, polyvinylidene fluoride (PVDF or PVF2), including an experimetal investigation of the effects of an applied electric field on the morphology of melt crystallization and on the nucleation and growth of polarized domains
A study of the applicability of nucleation theory to quasi-thermodynamic transitions of second and higher Ehrenfest-order
The applicability of classical nucleation theory to second (and higher) order thermodynamic transitions in the Ehrenfest sense has been investigated and expressions have been derived upon which the qualitative and quantitative success of the basic approach must ultimately depend. The expressions describe the effect of temperature undercooling, hydrostatic pressure, and tensile stress upon the critical parameters, the critical nucleus size, and critical free energy barrier, for nucleation in a thermodynamic transition of any general order. These expressions are then specialized for the case of first and second order transitions. The expressions for the case of undercooling are then used in conjunction with literature data to estimate values for the critical quantities in a system undergoing a pseudo-second order transition (the glass transition in polystyrene). Methods of estimating the interfacial energy gamma in systems undergoing a first and second order transition are also discussed
An Alternative Parameterization of R-matrix Theory
An alternative parameterization of R-matrix theory is presented which is
mathematically equivalent to the standard approach, but possesses features
which simplify the fitting of experimental data. In particular there are no
level shifts and no boundary-condition constants which allows the positions and
partial widths of an arbitrary number levels to be easily fixed in an analysis.
These alternative parameters can be converted to standard R-matrix parameters
by a straightforward matrix diagonalization procedure. In addition it is
possible to express the collision matrix directly in terms of the alternative
parameters.Comment: 8 pages; accepted for publication in Phys. Rev. C; expanded Sec. IV,
added Sec. VI, added Appendix, corrected typo
Direct Selection Response for Stem Rust Resistance in Tall Fescue
Resistance to stem rust (caused by Puccinia graminis Pers.: Pers. subsp. graminicola Z. Urban.) would be beneficial in tall fescue (Festuca arundinacea Schreb.). Two cycles of polycross (PX) selection on progenies from thirty-four parent plants (14 forage-types and 20 turf-types) were compared to one cycle of open pollination (OP) followed by one cycle of PX selection using a 2-stage greenhouse screening process. Response from selection was determined from composite half-sib progenies from each cycle. Number of plants with resistant reaction based on pustule type increased from 5 to 54% in the PX forage-type population and from 6 to 50% in the PX turf-types. Overall response from initial OP selection was similar to PX selection, but 78 and 50% of the gain, respectively, occurred in the PX cycle. Results indicated that rapid progress from selection in the greenhouse for stem rust resistance in tall fescue is possible using PX selection
Richness and Abundance of Carabidae and Staphylinidae (Coleoptera), in Northeastern Dairy Pastures Under Intensive Grazing
Dairy cattle has become popular to dairy farmers in the Northeast looking for management schemes to cut production costs. Carabidae (ground beetles) and Staphylinidae (rove beetles) are indicators of habitat disturbances, such as drainage of wetlands, or grassland for grazing animals, and their monitoring could provide one measure of ecosystem sustainability if intensive management systems expand or intensify in the future. Our objective was assess the abundance and species richness of these two beetle families under intensive grazing throughout Pennsylvania, southern New York and Vermont. We collected 4365 ground beetles (83 species) and 4,027 rove beetles (79 species) by pitfall traps in three years in Pennsylvania. Nine ground beetle species, Amara aenea, Poecilus chalcites, Pterostichus melanarius, Bembidion quadrimaculatum oppositum, Amara familiaris, Poecilus lucublandus, Agonum muelleri, Bembidion obtusum and Bembidion mimus represented 80% of the Carabidae collected.
Five other species were new to Pennsylvania. Four rove beetle species, Philonthus cognatus, Meronera venustula, Amischa analis, and Philonthus various = (carbonarius), comprised 74% of the total Staphylinidae collected. Yearly distributions of the dominant species did not change significantly in the three years with A. aenea and P. cognatus being most abundant every year. A parasitic rove beetle, Aleochara tristis, was recovered for the first time in Pennsylvania and Vermont since its release in the 1960\u27s to control face fly, Musca autumnalis.
Similar results were found in New York and Vermont. We collected 1,984 ground beetles (68 species). Pterostichus melanarius was most abundant. Pterostichus vernalis was detected for the first time in the United States (Vermont). It was previously reported from Montreal, Canada. We collected 843 rove beetles (45 species). Philonthus cognatus was the most abundant rove beetle. In addition, Tachinus corticinus, previously known only from Canada, was discovered for the first time in the United States in Vermont.
Pastures in Pennsylvania were diverse, containing 14 species of forage plants and 17 weed species. Botanical composition was similar in New York and Vermont. Sixteen species of grasses and legumes made up 90% of the plant composition and 36 species of weeds made up the remainder. This diverse plant ecosystem may explain the richness of ground and rove beetles in northeastern U.S. pastures because the heterogeneity in the plant population provided additional resources which can support a rich assemblage of beetles. Monitoring richness and abundance of Carabidae and Staphylinidae over three years in Pennsylvania suggests intensive grazing systems are ecologically sustainable
Forbidden Ca 2 in the sun unmasked by way of Venus
Eleven high-dispersion spectra of Venus, taken with blue Doppler shifts have permitted the unmasking of the 7323.88A forbidden line of Ca II from terrestrial absorption. An equivalent width is obtained of 7.4 + or - 0.4mA for this line in integrated sunlight. Our value of W sub lambda is smaller than previous values and much more accurate. The HSRA solar model gives a solar calcium abundance of A sub Ca = 6.21
Communicating for survival in the mining and construction industries: Northern conversations and Southern contextualisations
The Global South, as the collective for the peripheries of mainstream development is known, is often regarded as merely a beneficiary of Northern borne notions and theories in the field of organisational communication. The problem is that the Southern context and circumstance does not always mirror that of the North, which means that these dominant, revered theories are not necessarily applicable. One Southern context is that of the South African mining and construction industries which is seen as notoriously dangerous, plagued by various obstacles to internal organisational communication (such as illiteracy and diversity) and what Le Roux and Naudé (2009:29) refer to as “historical baggage”. The research question of this paper is hence whether congenital Northern communication theories can be adequately incorporated into the unique Global South in order to fulfil the important task of communicating safety information to employees. The article explores the appropriate implementation of the principles of the excellence theory, the stakeholder theory as well as the relationship management theory and the research methodology includes interviews, focus groups and quantitative questionnaires at two organisations. The result of the empirical research is the amalgamation and reworking of these theories’ principles into a model for internal safety communication applicable to the South
Development and application of a local linearization algorithm for the integration of quaternion rate equations in real-time flight simulation problems
High angular rates encountered in real-time flight simulation problems may require a more stable and accurate integration method than the classical methods normally used. A study was made to develop a general local linearization procedure of integrating dynamic system equations when using a digital computer in real-time. The procedure is specifically applied to the integration of the quaternion rate equations. For this application, results are compared to a classical second-order method. The local linearization approach is shown to have desirable stability characteristics and gives significant improvement in accuracy over the classical second-order integration methods
Magnetic buoyancy instabilities in the presence of magnetic flux pumping at the base of the solar convection zone
We perform idealized numerical simulations of magnetic buoyancy instabilities in three dimensions, solving the equations of compressible magnetohydrodynamics in a model of the solar tachocline. In particular, we study the effects of including a highly simplified model of magnetic flux pumping in an upper layer (‘the convection zone’) on magnetic buoyancy instabilities in a lower layer (‘the upper parts of the radiative interior – including the tachocline’), to study these competing flux transport mechanisms at the base of the convection zone. The results of the inclusion of this effect in numerical simulations of the buoyancy instability of both a preconceived magnetic slab and a shear-generated magnetic layer are presented. In the former, we find that if we are in the regime that the downward pumping velocity is comparable with the Alfvén speed of the magnetic layer, magnetic flux pumping is able to hold back the bulk of the magnetic field, with only small pockets of strong field able to rise into the upper layer.
In simulations in which the magnetic layer is generated by shear, we find that the shear velocity is not necessarily required to exceed that of the pumping (therefore the kinetic energy of the shear is not required to exceed that of the overlying convection) for strong localized pockets of magnetic field to be produced which can rise into the upper layer. This is because magnetic flux pumping acts to store the field below the interface, allowing it to be amplified both by the shear and by vortical fluid motions, until pockets of field can achieve sufficient strength to rise into the upper layer. In addition, we find that the interface between the two layers is a natural location for the production of strong vertical gradients in the magnetic field. If these gradients are sufficiently strong to allow the development of magnetic buoyancy instabilities, strong shear is not necessarily required to drive them (cf. previous work by Vasil & Brummell). We find that the addition of magnetic flux pumping appears to be able to assist shear-driven magnetic buoyancy in producing strong flux concentrations that can rise up into the convection zone from the radiative interior
- …