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DEVELOPMENT AND APPLICATION OF A LOCAL LINEARIZATION

ALGORITHM FOR THE INTEGRATION OF QUATERNION

RATE EQUATIONS IN REAL-TIME FLIGHT

SIMULATION PROBLEMS

By Lawrence E. Barker, Jr., Roland L. Bowles,

and Louise H. Williams*

Langley Research Center

SUMMARY

High angular rates encountered in real-time flight simulation problems may require

a more stable and accurate integration method than the classical methods normally used.

A study has been made to develop a general local linearization procedure of integrating

dynamic system equations when using a digital computer in real time. The procedure is

specifically applied to the integration of the quaternion rate equations. For this applica-

tion, results are compared to a classical second-order method. The local linearization

approach is shown to have desirable stability characteristics and gives significant

improvement in accuracy over the classical second-order integration methods.

INTRODUCTION

The quaternion (or Euler parameter) rate equations are widely used for determining

the orientation of missiles and aircraft in real-time flight simulation problems. These

equations are commonly integrated by using a second-order integration method developed

by Adams and Bashforth (AB-2 method). As shown in reference 1, the AB-2 method is

sufficiently accurate for sinmlation studies involving aircraft with moderate values of

angular rates; however, with the advent of high performance aircraft and their subsequent

simulation, more accurate integration techniques are required.

The purpose of the present study is to further evaluate integration of the quaternion

rate equations by the AB-2 method and to develop and evaluate an improved integration

scheme to use in real-time simulations. Desirable characteristics for this improved

algorithm are: (1) stability and accuracy over a large range of angular rates, (2) one-

pass algorithm which could be used at large step sizes, and (3) computer timing and

memory requirements comparable to the classical methods commonly used.

*Electronic Associates, Inc.



A general algorithm basedon a local linearization procedure is developedand is
then appliedto the digital integration in real time of the quaternionrate equations. The
resulting algorithm is referred to as the LL algorithm. The description of the LL imple-
mentation ona digital computer is presentedin the form of a program flow chart and
FORTRANsource listing. Also included is a simplified version of the LL algorithm for
thoseusers with limited computer resources.

The LL algorithm is comparedwith the AB-2 methodboth analytically and experi-
mentally. This comparison includes stability anderror analysis. Included for the exper-
imental study are bothanalytical inputs and inputs tapedfrom an actual piloted run. In
addition, bothmethods (LL and AB-2) are comparedwith a variable step seventh-order
Runge-Kuttamethodused as a high-quality approximation to the exact solution.

SYMBOLS

A ,B ,C ,C2,C 3
)

Ci,D',H,G,J,K J

coefficients in LL quaternion algorithm, where i=l,. .,4

A(t) time-varying matrix; for quater_tons, a skew-symmetric matrix which relates

components of a vector to their derivatives due to referencing a rotating

reference frame, radians/second

Ap amplification constant for roll rate p, radians/'second

ai quaternions (Euler parameters), where i = 1.... , 4

B control matrix of dynamic system

C transformation matrix relating vehicle body ,axes to inertial axes

cij

Akh
e

matrix elements of C, where i,j = 1, 2, 3

discrete form of transition matrix

F(X,t) n-dimensional vector composed of general nonlinear time-varying functions

of state vector X and time t, per second

_F

aX
Jacobian matrix of vector F with respect to vector

 xl' "'OXnj



h integrationinterval size, seconds

Ki

k_n

M

N

O(h n) = q5

Pk,Qk

p,q,r

tk

_(t)

x(t)

_N

5t

5X(t)

;t

identity matrix

imaginary unit,

constant complex vectors, where i=1,2

constant real vectors, where i = 1, 2

integer constants

matrix which relates quaternions at t = tk+ 1 to those at t = t k

norm of X

where _ =<Khn I and K>0

coefficients in general LL algorithm for solution of nonlinear time-varying

dynamical system

components of angular velocity vector 5, radians/second

time, seconds

value of t at t =kh, where k=0, 1, 2, . .., seconds

control vector (forcing function of time-varying system)

n-dimensional vector representing system states of a dynamic system

X whose elements have been normalized

small perturbation in t about t k

small perturbation in X about X k

complex number, )t = R(_t) + I()t)i, radians/second



Pk

_C

_D

Where

R k

RAB2

RLL

AR

eR

Rmax

R o,R(0)

Where

R k

R-I

R T

R

parameter in LL quaternion algorithm, (_kh)/2, radians

Euler angles relating vehicle body axes to inertial axes system, radians

magnitude of -_, radians/second

actual computed frequency of quaternions, radians/second

desired frequency of quaternions, m/2, radians/second

angular velocity vector relative to inertial axes system, radians/second

is any arbitrary scalar or vector variable:

value of R at t =t k

derivative of R with respect to time

R evaluated by AB-2 method

R evaluated by LL algorithm

deviation in R from some reference

error in R from some reference

maximum value of R

initial value of R

R is any arbitrary matrix:

value of R at t =t k

inverse of R

transpose of R



ABBREVIATIONS

AB-2

LL

Adams-Bashforth second-order integration

local linearization

RK-7 Runge-Kutta seventh-order integration

ANALYSIS

Statement of Problem

An aircraft may be considered a moving coordinate system. From the angular

velocity components (p,q,r), an integration of angular rate to determine angular position

is done. The quaternion rate equations are normally used in describing this orientation

(refs. 2 and 3). In some problems such as the simulation of two aircraft, the relative

geometry computations and the integration of the equations of motion, as well as the above

mentioned angular rates, require a large number of arithmetic operations per integrating

step. These operations are so numerous that an integration method is needed that

requires only one evaluation of the derivatives per integration step. The term "time

critical" will be used to define problems with this characteristic. A method which does

n derivative evaluations per step is defined as an n-pass integration scheme. Higher

order multistep methods could be used to increase the accuracy and maintain one evalua-

tion per step, but these methods have other difficulties such as determining the required

starting values. At the NASA Langley Research Center an interval size of h = 1/32 sec

is normally used for real-time flight simulation problems. The integration is typically

done with a one-pass integration method such as second-order AB-2. For high angular

rates encountered in high-performance aircraft, particularly as subsystems of an air-to-

air combat simulation, the computation is not sufficiently accurate using this method.

The purpose of the present study is to develop an improved algorithm for the integration

of the quaternion rate equations on a digital computer in real time. For this report,

angular rates up to 10 rad/sec are considered.

Figure 1 shows how the quaternion equations fit into a simulation problem. Note in

this figure the direction cosines cij are computed algebraically from the quaternions.

The angular components p, q, and r of the spin vector _, available from the equations

of motion, are taken as inputs to the quaternion block which is treated as the system in this

study. Also shown are the initialization and attitude angle readout blocks. The remaining

block in the figure is the normalization block. This block is usually added to normalize

the quaternions after integration of the quaternion rate equations (appendix A). Any



closed-loop effects through the equationsof motion o1'm_yvisual or other feedbackeffects
dueto a pilot are not consideredin this report.

The quaternionequationscanbe written as the following matrix differential
equation:

X(t) = A(t) X(t) (1)

where

x(0) = Xo

A(t) = 1
2

0 -r -q -p

r 0 -p q

q p 0 -r

p -q r 0

(A = -A T) (2)

X=

a 3

a4
.J

(3)

(Note that al, a2, a3, and a 4 of this report are equivalent to a0, a3, a2, and al,

respectively, of ref. 3.) From the eigenvalues of the above system, it is seen that the

natural frequency of this system is ¢o/2, where

2 = p2 + q2 + r 2

Other methods of calculating attitudes of a rigid body such as direction cosines (refs. 2

and 3) result in a frequency of w. The reduced frequency is an additional advantage in

using the quaternion equations.

For the matrix A(t) defined in equation (2), matrix equation (1) is called the Euler

parameter equation where al, . .., a 4 from equation (3) are called Euler parameters

or quaternions. The normalization condition for the quaternions is defined as

6



N 2 (4)=al 2 +a22 +a32 +a42 = 1

where N is the norm. The term "norm in" will be used to define the system described

by equation (1) and satisfying equation (4). When the system is not required to satisfy

equation (4), it will be referred to as "norm out." The effect of normalization upon

accuracy of computation is discussed later. This report is concerned with the integra-

tion of equation (1) in a one-pass system where A(t) defines the quaternion dynamics.

The investigation is performed for the classical second-order Adams-Bashforth predictor

integration method (AB-2 method) and for the new algorithm (LL algorithm) which was

developed to maintain accuracy at high angular rates and at increased step sizes.

AB-2 Method

Before developing the LL algorithm, a look at the solution of equation (i),using the

AB-2 method with Euler integration as the starter formula, is in order (ref. i). The vec-

tor AB-2 equation is written

Xk+l = Xk + k - Xk-1
(5)

Applying equation (5) to equation (1) gives

(6)

where

A k = A(tk)

Where _ is a constant vector A = A k , by taking the z-transform of equation (6)

and solving the resulting characteristic equation as in reference 1, the approximate solu-

tion assuming hw << 1 can be written as

4h3_4tF i(_+5h2w3/t ./m 5,2 3_t
X(t) = e 25----6 _Kle \2 9o , + _-¢2e-1\12 "+9--6 n w ]

(7)

where K 1 and K 2 are constant complex vectors that depend on initial conditions. The

application of Euler's formula yields the real solution



4h30p4 t

= e _ COS +--h2o_ t +_ sin + 5__h2co (8)
96 96

where K'I_ and _C_ are constant real vectors. Using initial conditions for equation (i),

equation (B) becomes

4h34f  A4h3i X(t) = e '_-_ t 5 256cos +_ _2__+_- Z _5 s_n +_ h2_ _(0)
_+96

which can be approximated by

4h3w4

X(t) = e 256 cos + 96 2A (2 5 3)_(+ -- sin + -- h2¢o 0)
co 96

(9)

The solution for the norm squared is found from equation (9) to be approximately (ref. 1)

N 2 = e (10)

This equation wii1 be used later in discussing the error in the norm.

General Local Linearization Algorithm

A general algorithm for the solution of a nonlinear system is now developed by the

method of local linearization. This approach is taken to produce a single-step one-pass

integration algorithm with the intent of applying it to the quaternion rate equations where

classical schemes fail for large rates. As mentioned previously, a one-pass scheme is

very important for time-critical problems such as large digital simulations in real time.

The algorithm is derived by applying the method of perturbation to the differential equa-

tions (not states) and then solving exactly the resulting differential equations after dropping

higher order terms in the perturbation.

Let the nth order ordinary differential equation describing a general nonlinear time-

varying dynamical system be expressed in state variable form as

8



X(t) = F(X,t) (11)

m

where X(t) is the n-dimensional vector representing the system states and F is the

n-dimensional vector composed of general nonlinear time-varying functions of the state

vector X(t) and time t. Let 5X(t) be a small perturbation about Xk defined as

5X(t) = X(t) - X k

where t k =<t --<tk+l; and let 6t be a small perturbation in time about t k defined as

5t = t - t k

where tk < t < tk+ 1= = . Therefore

5X=X= F'(Xk,tk) +IOF(x t )SX(t)+ _t( k k) t +"L_X. k, k _F _ ,t 6t
(12)

where F(X,t) has been expressed as a Taylor series in X(t) and t about the point

(Xk,tk). When equation (12) is integrated, it becomes

where

= 0F _ ,t k

or

h = tk+ 1 - t k

_k+l = _k + PkFl_k,tk/ + Qk _-_tFXk,tk) + O(h 3) (13)

9



where

Pk = Ak-l(eAkh - I)

Equation (13)is a general algorithm for the solution of the nonlinear problem of equa-
tion (11)andis related to the exponentialmethodof reference 4. Note that this is a

single-step solution to the nonlinear problem with local truncation error being O(h3).

Now, assuming

F(-X,t) = A(t) X(t) + B_(t)

(a linear time-varying system with forcing function u), equation (13) becomes

-- Akh .
Xk+ 1 = e Xk + QkAkXk + PkBUk + QkBUk (14)

For B = 0 (a time-varying system with no forcing function), equation (14) becomes

Akh
Xk+l = e Xk + QkAkXk (15)

Equation (15) is the particular case that is applied in this report to derive an integration

algorithm for the quaternion rate equations.

LL Algorithm

Application of equation (15) to the quaternion differential equations results in the

LL algorithm. For the matrix series definition of eAk, it can be shown that

Akh Wkh 2A k Wkh
e =I cos--+_sin

2 cok 2
(16)

since

i0

AkA k = ___
_Ok2I

4 (17)



where

_pk 2 2 2Wk = + + qk + rk

Substituting equation (16) into equation (15) and using equation (17) results in

Xk+l = CIXk + C2AkXk + C3£kXk + C4Ak'4"RXk (18)

where the coefficients are defined by

C 1 = cos Pk

2 sin pk

C2 - Wk

c4_4 2
_k _ - ---_

and

With matrix A defined by equation (2), equation (18) can be written

where

Xk+l = MkXk (19)

Mk=

"H G -J -K-

-G H -K J

J K H G

K -J -G H

ii



and where the scalar elements of M k are

H = C 1 + C4A' (20)

G = -C_r k - C3r k + C4B' (21)

CT •J=C_qk + 3qk- C4C' (22)

2Pk + C3P k C4D' (23)

A'= PkPk + qk_k + rk_k

Pkqk - qkPkt

B =
4

C' = Pkrk - pk_k

qk_k - qkrk
D_=

4

sin PkY

C 2 - cok

C 3 Wk2 cos p

Equation (19) constitutes the LL algorithm.

The FORTRAN subroutine (QUAT) incorporating the LL algorithm plus normaliza-

tion is given in appendix B. As mentioned before, this is a single-step algorithm. (See

fig. 2 to compare its implementation with that of the AB-2 method.) Note that in addition

to using the spin vector w, this algorithm uses the angular acceleration ¢o, which is

always available from the equations of motion. This adds to its accuracy. If stringent

requirements are necessary, a simplified version of thi_ algorithm requiring less time

and memory may be used. See appendix C.

12



Assuming _ is a constant vector, equation(15)becomes

Xk+l = eAhXk

which is the discrete form of

X(t) = eAtx(0) (24)

or

where equation (16) was substituted into equation (24).

equation (9), equation (25) gives the exact solution for the LL algorithm.

dix D for further stability characteristics of the LL algorithm.

(25)

In contrast to the AB-2 method,

Refer to appen-

Computational Considerations

The LL algorithm developed in this report, along with the AB-2 method, has been

implemented on a CDC 6600 computer at Langley Research Center and has been pro-

gramed to operate in a real-time mode. Most runs were made at a step size of

h = 1/32 sec, which is the normal step size that is used for real-time problems. The

implementation of the LL algorithm is simple. The flow chart of figure 3 depicts the flow

of the real-time program and shows the placement of the LL quaternion subroutine (sub-

routine QUAT). It should also be noted that the body rate input variables p, q, and r,

and their derivatives i_, el, and i', will be stored by subroutine SAVE during the first

pass of a multipass integration scheme. For a single-pass scheme this storage may be

omitted.

Additional compute time for calculating the exponential matrix function of equa-

tion (15) by summing a series or by other numerical methods did not exist for the partic-

ular application of this report. The skew-symmetric nature of the quaternion system of

equation (1) enabled a closed analytical expression to be written. However, the LL algo-

rithm does have slightly larger core and timing requirements than the AB-2 method. The

additional requirements were approximately 88 locations and less than 1 percent of the

compute time per step size (h = 1/32 sec). These requirements are negligible for the

typical real-time flight simulation problems; these requirements are even more insignifi-

cant when the accuracy gained and the possibility of significantly increasing the step size

are considered.

13



RESULTSANDDISCUSSION

Experiment

Two methodsof computingthe quaternions (AB-2 and LL) were incorporated into a
real-time program. Thesemethodswere evaluatedsimultaneously andthe results were
comparedwith each other andwith the results obtainedindependentlyfrom a high quality
seventh-order variable-step Runge-Kuttaintegration routine. Most runs were madeat
h = 1/32 sec. As mentionedpreviously, the quaternion equationsare the system or plant
of concern for this experiment and require as inputs the angular velocity components p,
q, and r of the spin vector _. (The LL algorithm, in addition, requires the angular
acceleration components _, el,and i_.) The results will be given for four different input
types, progressing from the simpler constantinputs to anactual tapedpiloted run. These
inputs are: (1) constantrates, (2) sinusoidal rates, (3) pulse sinusoidal rates, and
(4) piloted inputs.

Figure 1 showsthe variables of interest in this study. In addition to the errors in
the quaternions, the errors encounteredin typical direction cosines andin the Euler
angles _, 8, and _ are given. The error in 6 is of special interest due to the vehi-
cle roll rate p being the main contributor to the angular velocity vector -_. These
errors wouldbe important in the overall flight sinmlation problem since they are sent to
the simulator and fed back to the equationsof motion through pilot control inputs. Though
important, the effects of the errors on the completesimulation problem will not be given
in this report. The effect of "norm out" will begiven for the constant rate input for both
the LL andAB-2 methodsfor comparison (see ref. 1). Results for the other inputs will
be for "norm in" unless stated otherwise.

Constant inputs.- The simpler constant rate inputs were chosen since they permitted

an analytical solution (eq. (9)) and allow comparison with the results of reference 1. In

addition, this case allows the LL algorithm to be used as a reference since it is exact,

neglecting computer round-off errors.

Figure 4(a) shows for the AB-2 method the percent error eN 2, from its desired

value of 1.0. (See eq. (4).) This error is plotted as a function of time for the constant

values p = q = r = 1/_ rad/sec and h = 1/16 sec. Normally the Euler integrating

starting formula is used to start the AB-2 method. The starting error has been sub-

tracted as in reference 1. Figure 4(b) shows the norm squared error for h = 1/32 sec

for p= 1,3, and 5rad/sec (q=r =0). As shown in the figure for p= 1, there is only

negligible error after 120 see, but as p is increased, larger errors are encountered at

shorter times. Thus the curves indicate the AB-2 method may no longer be applicable

for these larger roll rates. The predicted errors shown were calculated from equa-

tion (10). The errors in the norm can be eliminated by the addition of normalization to

14



the resulting quaternions. As statedpreviously, the LL algorithm hasno error in norm
for a constantangular velocity. It might be concludedthat the LL algorithm doesnot
require normalization. However, for the general case, co varying, this normalization
is shownto add a few digits of accuracy.

Seefigures 5(a)and 5(b)for two time-history segmentsof the quaternion a1 for a
constantroll-rate input, p = 10 rad/sec (q = r = 0). The upper time-history plot in

each figure represents a 1 resulting from the LL algorithm, and the lower represents

a 1 resulting from the AB-2 method. Note, in figure 5(a) the divergence of a 1 for AB-2

which could have been predicted from the results shown in figure 4(b). When normaliza-

tion is added, figure 5(b) shows the error in norm has been eliminated for AB-2.

Figure 6 shows the error in computed frequency of the quaternions ecoc for AB-2

plotted against the correct or desired frequency coD. This frequency error was invariant

of normalization. The solid curve shows the error as predicted by equation (9). The

errors for LL were essentially zero and are thus not plotted.

Figure 7 shows for AB-2 the error in roll angle versus time for constant values of

roll rate p and h = 1/32 sec. Even for values of p where e_ is small, the direc-

tion cosines could still have an effect in the inertial velocities or relative geometry. (See

fig.1.)

Figure 8 shows how the errors in the direction cosines vary with time. Since the

errors for LL are essentiallyzero for constant rate inputs, LL is used as a reference in

calculatingthese errors for AB-2. The beat oscillationwith period of 62.8 sec is due to

the phase shiftterm given in equation (9). Not all elements Cij (where i,j= 1,2, 3)

of the direction cosine matrix C vary since q = r = 0 for this case. The lasttwo time

histories show typicaldirection cosines, C22 and C32.

Sinusoidal inputs.- The following sinusoidal inputswere chosen to provide a drastic

time-varying case, drastic in the sense that co is approximately 10 rad/sec:

p = 10 sin 0.5t

q = r = 2 sin t

Figure 9(a) shows typical time histories of the quaternions al, . .., a4, while fig-

ure 9(b) gives the Euler angles, ¢/, 0, and 4_. A seventh-order Runge-Kutta solution

(RK-7) was used as an independent check. The continuous curves for the AB-2 method

and the LL algorithm are denoted by subscripts AB-2 and LL, respectively. Figure 9(c)

shows the differences in solution between AB-2 and LL for the direction cosines. Also

shown are two typical direction cosines C22 and C32. Figure 9(d) gives the difference

15



in solution for the Euler angles. Also shownare the angular rate inputs p, q, and r.
The Euler angleerrors are given in percent of one revolution (360o).

Figures 9(a)and 9(b)are plotted on a scale such that anysignificant error may not
be readily apparent. However, if reference is madeto table I, which gives typical errors
for t = 58, 59, and 60 sec, significant errors will be noted. (For example, at t = 58 sec

the AB-2 method shows an error of approximately 14.5°.) The errors are shown for

AB-2 with "norm in" and for LL with both "norm in" and "norm out." This table clearly

points out the superiority of the LL algorithm over the AB-2 method.

The extent of the nonorthogonality of the direction cosine matrix resulting from the

quaternion integration errors is shown for this time-varying case. The criterion used to

evaluate the orthogonality of the direction cosines is to multiply the computed matrix C

of direction cosines by its transpose CT (appendix A). For the above inputs, the ele-

ments of the matrix CC T is compared with the corresponding elements of a unity matrix.

At the end of a 60-second run for AB-2 and "norm out," the product of the computed matrix

of direction cosines with its transpose produced a matrix with numbers along the main

diagonal that differed from unity by about 8 x 10-1; for the same run for LL and "norm

out" the difference was 2 x 10 -2. The off-diagonal numbers which should have been zero

contained only the round-off error of the computer for both methods (4 × 10-15). At the

end of a 60-second run for "norm in," the matrix CC T, neglecting round-off error, was

equivalent to the unity matrix for both methods, as would be expected.

Sinusoidal pulse inputs.- Results for two sinusoidal pulse cases were chosen to

provide time-varying inputs with characteristics similiar to those of an actual piloted

roll maneuver. The roll rate was chosen to give roll in one direction only to show the

effect of cumulative error in roll angle.

For the first case, a coning run, where, for positive values only,

p = 5 sin 0.25t

with

q = 0.25 cos 12t

r = 0.25 sin 12t

was considered. Figures 10(a) and 10(b) show the quaternions and Euler angles after

t = 60 sec. Figures 10(c) and 10(d) show how the errors increase with time for both the

direction cosines and Euler angles. The cumulative error in (b can easily be seen.

Typical errors are given in table II.
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In aircraft studies, since the vehicle roll rate p is the main contributer to the
angular velocity vector _, a design chart was developedfor the secondcase, a pure roll
maneuverusing AB-2, where, for positive values only,

p = Ap sin wt

with

and

q=r=0

Pmax -- Ap -< 10 rad/sec

Pmax = Apw < 10 rad/sec 2

Figure 11 is a design chart showing curves of constant error in roll angle ¢) for two

consecutive sinusoidal pulses in roll rate p using AB-2. This error is percent full

scale where full scale is one revolution (¢) = 360o). For example, given for a particular

problem that Pmax = 3.5 rad/sec 2 and Pmax = 7 rad/sec, the error in roll angle is

approximately 3 percent or 10.8 °. From this chart, one can see that the main contribu-

tion to error is large values of the angular rate. Even for small accelerations, very

large errors will result for large angular rates. The errors for this chart were obtained

using LL as the reference. This was done for programing simplicity since the maximum

error for LL for the ranges of p and _ shown in the chart is 0.1 percent (or 0.36 ° ) for

Pmax = 10 rad/sec; thus LL is an adequate reference. Similiar design charts were devel-

oped for the second-order Adams-Moulton and Runge-Kutta integration routines, which,

even with their additional pass, did not eliminate the errors at the higher roll rates. This

could have been predicted from the stability chart in figure 12.

Piloted run.- The final case used as inputs the angular rates and accelerations from

an actual piloted run. This was not a very violent run, having a peak roll rate of only

5 rad/sec for a short duration of time. Figures 13(a) and 13(b), depicting errors in direc-

tion cosines and Euler angles for AB-2 for a time segment of 130 sec, show p to be the

dominant input, the criterion used in selecting the previous inputs. Typical errors for

both AB-2 and LL are given in table III.
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Effects of Increasing StepSize

Of great importance in real-time digital flight simulation wouldbe the increase in
step size without significant loss in accuracy. For the drastic sinusoidal case, fig-
ures 14(a)and 14(b)showthe results for h = 1/16 sec. Similar results for h = 1/32 sec

were shown in figures 9(a) and 9(b). Typical errors are given in tables I, II, and III for

the three time-varying cases covered in this report. On a design chart {similiar to

fig. 11) for the LL algorithm for h = 1/16 sec, the maximum error in _ was 0.4 per-

cent (1.4°). These results show the LL algorithm may be used with a large step size to

significantly decrease the total computing time for a solution and still give results which

are an order of magnitude more accurate than the AB-2 method using half the step size.

For systems other than the quaternions, the _(X,t) of equation (1) may be a more com-

plex vector function and the matrix exponential function e Ah may not be computed

directly as in this report; however, the possibility of using a larger step size could still

outweigh the increase in computation time necessary to compute the exponential function.

CONC LUDING REMARKS

A general algorithm for the solution of nonlinear systems is developed by the method

of local linearization. Applying this general formula, a one-pass algorithm has been

developed for the integration of the quaternion differential equations used in real-time

digital simulations for six-degree-of-freedom problems. This algorithm has local trun-

cation error of order of the cube of the step size, making it superior to those classical

second-order integration schemes which have error of order of the square of the step

size. Its superiority, in terms of both accuracy and stability, has been demonstrated for

large angular rates. In fact, it can be used with larger step sizes and still retain accuracy

and stability. Being a one-pass algorithm, its application to time-critical flight simulation

problems is possible and sometimes necessary.

A FORTRAN subroutine has been written to implement this algorithm and its mech-

anization is very simple. It had a slight increase in timing and memory requirements

over the classical second-order integration method used for comparison in this report;

however, this increase was insignificant considering the accuracy gained. If stringent

requirements are necessary, a simplified version of this algorithm requiring less time

and memory may be used. Where large angular rates are anticipated or runs of long

duration are to be made, the algorithm should be mechanized. Even without these condi-

tions, the algorithm is as efficient and much more accurate than the classical methods

previously used.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., September 26, 1973.
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APPENDIXA

NORMALIZATION

Numerical integration of the direction cosine rate equationsproduceserrors in the
resulting direction cosines which in turn causethe resolved componentsof a given vector
to be nonorthogonal. Normally, constraint equationson the direction cosines are added
to improve the orthogonality of the transformation betweenbody andinertial coordinates
(refs. 5 to 7). In the present report the quaternion rate equationsare integrated andthe
direction cosinesare thencomputedalgebraically from the resulting quaternion states
al, . ., a4. This integration may produceerrors in the resultant quaternions which
causethe componentsof the quateraionvector X of equation(3) to violate the normality
equation (4). The ultimate result of this violation is the nonorthogonality of the transfor-

mation matrix mentioned above. When quaternion rate equations are used, steepest

descent or other methods are employed to satisfy the normality constraint of equation (4)

(refs. 2 and 3). In the present report the quaternions al, . .., a 4 are normalized after

integration of the rate equations. The implementation is accomplished by dividing the

quaternions by the norm xTx

N ai ai
- - (i= 1,... 4)

ai I/2 N

(x x)

This mechanization is shown in figure 1. The effectiveness of the constraint can be found

by multiplying the computed direction cosine matrix by its transpose. For an orthogonal

transformation, a unit matrix is the correct result of this multiplication.
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APPENDIX B

LL QUATERNIONSUBROUTINES

SUHROtJT INE QUAT ( I )

C

C _-**x ?}U_:}_CUTINE _-c)r_ !/VAL!)ATION OF

C _'f',_'* tJ.%ING LOCAL L_INEAFRIZATION

COMMON

X /INTCOM_I m

X I SCHEML

X /[aK0P / AP, I (2)

X /TO',IAT / kJK ( 2 }

X 000 T',< (2)

DIMENSION OMeGa;<(2} , O_4F-G&K2(2),

X C4 {2 } ,, AK{p) .

X HK ( 2 } ,, SF_HOK" { 2 ,

k2EAL JK {2 } , <K {2 }

EQtJ1VALENC r- ( rl ,CRHO_< }

DATA OM2.;'v,{RO / 1 ,F-f) /

()MFG,_KP{I) : P.<{I}-;{-,_<{I) + QK{I)_QK{I}

IF ( Of','_EG,Z',K2 ( I } ,,'.T • ©r',12ZEi40 } OI4FGAKp { I

C

O",*_G_< { I }

f#HO< { }

S,Q H 0'< I )

('-2P (

C3P (

C4 t

_<

C< f

OK I

h< l

OK I

JK [

KK 1

AT

/_T2

AT-',

AL_/4 { l

ABI ( I

_tB2 { I

_H3 ( I

: 5_()_T ( C, MEGA<2 { [ } )

= H'_©W<GA< ( t }*,%

: <,IN(_-_-b<(l ) )

= (.O:B (DHO_ ( I } )

: /_W_O< ( I )/OMFGt, K(

- 2.,_( t • - CROOK( I

: a._{lt - Po'_CpD( I

:--.2% -a {PK ( I } *PBOTK

= .2%'_ (P'< { I )*G73CT_,7

: ,2q{ (_K ( [ ) _P'%.OTK

= .2%'_(Q;< ( I )_I'4DOTK"

: Ct { I } 4- C/4 (

:-L2D{ I }*RW I

= C2P { t }*OK I

: £2P( I }*;)< I

= HK { I } _-Af_ 1 I

: OK ( 1 )*A,:_I I

: KK ( i } }_h_ -_ I ]

= AT 1

= _, T P

= AT

• H , I NT

, DE_INT(2,23}

• AHd{2} , AHq( o

, QK(2 ) , #KI(p }

• _DOT'<(2 )

_<(p) , r<

CDHOK P }

)

}/OM:GAK2

) /OS_FGAK2

I + QK(I

I - O,'< { I

NO[_F_AL I ZAT ION OF QUATL_N

COI_'_-C T = 1 • ©/q,f)QT {A!_I

] + #,Ha

_,HI ( I } : COI_t CT_AP.I ( I

AB2{ I } : C,DRECT*Aq2 ( I

ABS{ I } : CORECT*AP,3( I

AB4 ( I } = COR__CT*AF34 ( I

END

I } _-_I]OT< (

I )*C'DDT< (

t ) _D_]OT "< {

, NEO

, AF_a { p )

, PDOT< {2 } •

2 ), C2P(2),C3P(P ),

2 ), DK{2 } ,OW{2 } ,

+ u< ( I )*FqK ( l )

= C _.12 ZF-RO

I )

I}

*Or_r': r< { I "}

tort .c" r< ( I ) }

_-_;"£-: I K ( I ) }

_-Q:)QT< ( I ) }

)*AK I

-- CBP

+ C 3P

+ C 3P

+GK { I )*A:_p{ I }-.JN

_H< ( I )}{A;!p ( I }-K<

-iS { I )-_A {p( ] }-,',K<

ON DA'M A _I_- T h b_ 5,

I }*AI_I ( I } + Arid

I }*AB4 ( I } }

} + C4 I

) - '-4 I

} - Ca I

T )*A;',9 I

T _A143 I

+ #K ( [ )*DOOT<

*UK 1)

*CK I}

*DK I)

-KK I }*At}4{ I

+JK I }*AU4{ I

+CK I )*A_S4 { I

I}}
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APPENDIX B - Concluded

SUBROUTINF _AVE(I)

C'i** SUBROUTINE FOR SAVIN@ FORCING FUNCTION VALUES TO BE USED BY THE

Ct_ QUATFRNION PARAMETER SUBROUTINE, REQUI_ED WHEN A MULTI-PASS INTEGRATION

C*_** ROUTINE IS USED IN THE MAIN PROGRAM TO INSURE UPDATES ONLY ONCE

C_ PE_ ITERATION,

COMMON/BK05/P(2),Q(2),R(2),PDOT(2),QDOT(_),RDOT(2)

COMNON/TQUAT/PK(2)QO_(_) qRK(_)tPDOTK(2) tQDOTK(_)iRDOTK(_)

PK(I ):P(I) SPDOTK(1 )=POOT(I )

OK(I )=Q(1) $ODOTK(I }=QDOT(1)

_K ( I )=_l I } SRDOT_ { I ):_DOT _ 1 )

R_TUDN

FND
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APPENDIX C

A SIMPLIFIED ALGORITIIM

If one were to assume a zero-order hold on the p. q, and r inputs to the LL

algorithm (that is, p, q, and r assumed constant over one iteration), a simplified

version of LL may be obtained. This assumption implies that only the first two terms

of equation (18) are used. As aresult, the equations for A, B , C , D , C_, and C 4

would be eliminated. This simplification may be necessary for one with limited com-

puter resources and would supply sufficient accuracy for low angular rates. The maxi-

mum error on a design chart for this simplified algorithm (similiar to fig. 11) would be

2.5 percent (or 90). Typical errors are given in tables l, [I, and III. It is important to

notice that even this simplified LL algorithm is better than the classical second-order

methods referred to in this report.
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APPENDIX D

STABILITY CHARACTERISTICS OF LL ALGORITHM

The major computational difficulties associated with solving the system

X = A(t) X(t)

where

x(0) = x o

(DI)

A=!
2

m 0 -r -q -p

r 0 -p q

q p 0 r

p -q r 0

A= -A T) (D2)

_T_ = 1.0

using the classical integration methods in real time, lie in the fact that the eigenvalues of

the system are outside the stability boundaries of the methods. The eigenvalues are

purely imaginary with multiplicity two, that is, +__w2i, +__wi where w2 = p2 + q2 + r 2.

The basic problem is illustrated for AB-2 in figure 3 where the stability boundary (ref. 8)

is shown relative to the eigenvalue location of equation (1). Clearly, the purely imaginary

roots always lie outside the stability boundary of the method (h > 0) since the stability

boundary only touches the imaginary axis at the origin. Therefore, any truncation or

roundoff errors introduced in the solution process will, in general, not damp out; and the

integral curve can become strongly divergent, increasing without bound as a function of

time. All classical explicit methods which are suitable for real-time simulation have

stability boundaries that do not include the imaginary axis except at the origin.

The LL algorithm described previously can be written as

Xk+l = MkXk (D3)
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where

Mk = H

APPENDIX D - Continued

-1 0 0 O

0 1 0 0

0 0 1 0

0 0 0 1

0

-G
+

J

K

G -J -K

0 -K J

K 0 G

-J -G 0

(D4)

The method has local truncation error of O(h3). The scalars H, G, J, and K are as

defined in equations (20) to (23). The physical meaning of X (ref. 3), indicates bounded

solutions of the quaternion rate equations (neutrally stable solutions). Therefore, the

eigenvalues of Mk should lie close to the unit circle (ref. 9). Indeed a "perfect" algo-

rithm would necessarily have root locations on the unit circle. The eigenvalues of the

matrix Mk can be written as

_1 =H +i_

_2 = H - i_

_3 = H + i7

_4 = H - i_

(D5)

where

= +_G 2 + j2 + K 2

The magnitude of _j (j = 1, . ., 4) is given as

where

Y = _k h2

(D6)

(DT)

(D8)
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APPENDIXD - Continued

Z 4 (D9)

Q(Z)=ISizZ cos Z1 (DI0)

wk = kPk + qkClk + rkr (Dll)

The error in _,]2 is defined as
J Ik

Jk
(D12)

Note for ¢Ok¢0 and ¢bk¢0 ,

h__0L\Z/
= 0 (D13)

that is, the method is consistent. Observe also for Y ¢ 0,

lim {_
_-_1 Jl_ = I'0 (DI4)

when h is fixed and & = M (where M is a positive number), which is a desirable

asymptotic property. For sufficiently small h

2 ¢bkCOkh3 + O(h5 )
I_jlk= 1+ _ +l_¢bk 2h4

(D15)

with a corresponding error defined by equation (12). For the case where w is a constant,
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APPENDIXD - Continued

_j2k= 1.0 (D16)

indicating perfect placementof the system eigenvalues. Corresponding results for AB-2
(ref. 1)and RK-2, two popular methodsemployedin real-time sinmlation programing,
are, respectively,

+ h4cv'4+ o(hS) (D17)2:1

2 h4o:4 ( )= 1 + 6----_ + O h 5 (D18)

For this case (w is a constant) the superiority of the LL algorithm is obvious since there

is a definite bias of root placement for the other two methods. The implication of this

observation with regard to numerical stability will now be considered.

Let X(tk) be the exact solution vector for equation (1) at time t k and Xk be

the one-step solution of the LL algorithm, and define the error as ek = Xk - X(tk)" It
can be shown (ref. 10) that error propagation satisfies an equation of the form

ek+l = Mkek+ Y(tk,h ) (D19)

/ \

where _(tk,h ) is the local truncation error. The behavior of ek for large n depends

mainly on the eigenvalues of Mk. If these eigenvalues have magnitudes which are con-

sistently less than one, then the error norm will remain bounded. If co is a constant

and assuming no computer round-off errors, equation (D19) has the solution ej = 0 for
all j. This conclusion is cot true for AB-2 and RK-2 since the magnitude of the eigen-

values are always greater than 1 for co ¢ 0. The analysis of equation (D19) in the general

case is more difficult and will not be presented here. Experience has indicated, however,

that the LL algorithm exhibits a high degree of stability for relative large step sizes, i.e.,

h =>1_ over a wide range of co and do. A possible explanation of this can be deduced
32

from equation (D15). In aerospace applications the acceleration do must eventually

change sign; therefore the eigenvalues of Mk

circle. This error willacceleratewhen /_jt 2
I I

changes sign.

will not consistently lie outside the unit

> 1 and will eventually damp when do
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APPENDIXD - Concluded

Another indicator of performance of a specific numerical methodwith regard to the
solution of equation(D1) is the magnitudeof the variation of the constantof motion xTx.
Defining V = _T_ from equation (D3) and substituting equation (D4) there results in

2

Vk+ 1 = _j V k (D20)
k

It can be shown that V is a Liapunov function (ref. 11) for the system and therefore can

be employed to study the stability characteristics of the LL algorithm, i.e., stability is

implied by the condition (assuming no rounding errors)

P(Z) + _ Q(Z

Jk

=<0 (D21)

for all k.
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