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FOREWORD

The research reported herein was performed in the Materials

Science Department of the University of Virginia, Charlottesville,

Virginia 22901.	 The work was initiated under grant number	 ti

NASA-NAG-1-419, "A Study of the Applicability of Nucleation Theory to

Quasi-Thermodynamic Transitions of Second and Higher Ehrenfest-

Order." This report covers research performed from December 1983 to

December 1984. Since the major portion of the first year's work

involved the theoretical development of a relatively unexplored area the

results of these efforts are presented in a more detailed fashion than

usual in this Annual Report. The investigators for this project are

Dr. R. Edward Barker, Jr., principal investigator, and Kenny W.

Campbell, graduate research assistant.
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SECTION I

ABSTRACT

The applicability of classical nucleation theory to second (and

higher) order thermodynamic transitions in the Ehrenfest sense has

been investigated and expressions have been derived upon which the•

qualitative and quantitative success of the basic approach must

ultimately depend. The expressions describe the effect of temperature

undercooling, hydrostatic pressure, and tensile stress upon the critical

parameters, the critical nucleus size, and critical free energy barrier,

for nucleation in a thermodynamic transition of any general order.

These expressions are then specialized for the case of first and second

order transitions. The expressions for the case of undercooling are

then used in conjunction with literature data to estimate values for the

critical quantities in a system undergoing a pseudo-second order

transition (the glass transition in polystyrene) . Methods of estimating

the interfacial energy T in systems undergoing a first and second order

transition are also discussed. Plans for future research and a list of

publications and presentations accompanied by manuscripts and

abstracts are also included.



SECTION 11

H

INTRODUCTION

Fill	
A. General Background

As in the case of so many other important concepts in science, the

foundations of nucleation theory were laid a century ago by Gibbs. (1)

Important developments which put the subject of homogeneous nucleation
I!

in a form recognizable by modern students occurred in the 1920's and

1930's when Volmer and Weber (2) and Becker and Doring (3) sought to

understand thenphe omenon of vapor condensation. Subsequently the

t concepts of heterogeneous nucleation were developed, so that modern

nucleation theory includes both homogeneous and heterogeneous models.

The theory has been applied to phase transformations in metals

and to a large extent metallurgists have tended to dominate in the majorF
developments in the field for many years. Nevertheless, some signifi-

cant specialized applications of nucleation theory have been made by

polymer scientists.	 Among the most notable are the efforts by

Price HoffmanHoffman and Lauritzen (5) , Lindenmeyer (6) , and others to

understand the originally unexpected lamellar morphology of polymer

single crystals and the kinetics of chain folding in such crystals.

Nucleation theory has previously been successfully applied only to

y thermodynamic transitions of first order in the Ehrenfest sense.

However, in this work, classical nucleation theory is applied to

transitions of second (and higher) order.

B. Meaning and Significance of a Second Order Transition

{

	

	 In the Ehrenfest classification of phase transitions, the order of a

given transition is determined by which derivatives of the Gibbs free

z	 #



Fr_ _

energy are discontinuous. Thus, in the present thermodynamic con-

text, the phrase "seccnd order" refers to physical processes of a

fundamental nature and not necessarily to correction factors of small

magnitude. According to the definition, a second order phrase transi-
i^.

tion in the Ehrenfest sense is one in which the Gibbs free energy and

E^ its first derivatives are continuous at the transition point while the

second derivatives are discontinuous. The primary discontinuous

properties associated with the second derivatives are changes in the

r	 thermal expansivity Da, the isothermal compressibility AO, and the heat

capacity at constant pressure AC 
P* 

Hence, a second order phase

transition is characterized by "jumps" in such thermodynamic quantities

as those mentioned above and thus differ from a first order transition

only in the quantities which exhibit discontinuity and not in fundamen-

tal significance as thermodynamic phase transition.

C. The Thermodynamic Basis of Nucleation Theorx

As is widely known, when a pure system of molecules (atoms

included) which exists as an equilibrium (stable) phase a at a given set

of intensive variables (T 1 , p l , etc.), is subjected to new intensive

conditions (T2 , p2 , etc. ) where a is no longer the only stable phase

but where one or more new phases are stable, then it is possible that

the expected transformation

a i B	 (1)

will occur only slowly, if at all, within a finite observation period.

According to the precepts of nucleation theory, the reason for this

inhibition of the expected transformation is that molecular fluctuations

and diffusive motion must occur which create a small particle of 0 within

the a-milieu (but see ref. 7) and that there is an interface between the

3



a and B regions in which the molecules have an excess fret energy I -

Tag per unit area. Thus the true Gibbs free energy change

corresponding to the transformation of a small amount of a into a small

nucleus of 13 is not merely the so-called bulk thermodynamic value AG

(energy per mole); it is instead

AG - V0 (8G/us ) + Aas ><as	 (2)

where VS is the volume of the 0-nucleus, u s is the molar volume, and

A 4 is the interfacial area of 0. If the growing nucleus has more than

one type of interface, then the term A asras would imply a summation

over the relevant areas.

Thus, according to nucleation theory local density fluctuations will

lead to the formation of a small nucleus of B-phase within an a-phase

natrix if the temperature is less than the normal transition temperature

Tt for a where B is the stable phase when T < T  (Fig. 1). The

total interfacial energy ACO Yas will oppose the enlargement of the

nucleus, and a bulk free energy 9V  will encourage growth (Fig. 2).

The term

g 3 
(G4 - 

Ga )/u6	(3)

represents the free energy change per unit volume of transformed

material. Equation (2) now becomes

AG - gVs + Mo .	 (4)

D. The Customary Approximations

	

	 1
t

In the standard treatments, AG = AH - TAS is approximated, at a

degree of under cooling

C'	
t

® - T° - T	 (s)

00 O
by eH O AHt , &S 2 OHt /Tt which may be seen to give

4



0

o	 e	 dHt
da d3t • 8 where ASt • -^-	 (6)

T 

or

o
g = 5t0 with a  = ASt/ v^.	 (7)	 t

The standard treatments next proceded by taking a(AG)/ar = 0, where

r is the radius of a spherical nucleus for which

VS - (4/3)vr 3 and A0 = 4sr' .	 (8)

This gives the size of the critical nucleus r  to be

r  a -2T/g .	 (9)

For the stable a 4 6 transition, g will be negative (g = 0 for the

equilibrium transition) . Substitution of Eq. (9) back into Eq. (4) gives

the usual type of expression for the "activation barrier" that must be

overcome before the continued growth of the 0-nucleus can take place.

AG0 = (16s/3)T3/g2 3 16.76 T3 /g2 .	 (10)

This barrier, and the critical size rc , are of course both dependent on

the degree of under cooling, through Eq. (7), therefore

e
-2Y(T J9)

rc = -2Y/st8 $ —^---- and AGc = (13**) Y'
/s:e:	 (11)

t

5	 -



SECTION 111

SUMMARY OF PROGRESS, PAPERS AND PRESENTATIONS

A. Summary of Progress on Research Grant NASA-NAG-1-419	 I

The main idea behind the basis for our work is that if we break	 ;^t

away from the conventional approximation that leads to Eqs. (6) and

(7), instead introducing the assumption that AG and therefore g can be

expanded as a Taylor series in 8, to which Maxwell's relations and some

other thermodynamic operations are subsequently applied, then we have

a powerful, relatively simple, and (as far as we have been able to

ascertain) a previously undiscovered formalism for predicting (1)

non-linear correction terms for first order thermodynamic transitions,

(2) the size and barrier height for second order transitions (in the

Ehrenfest sense), and (3) the possibility of a formal extension of

nucleation theory to even higher order transitions. Since the new

theory brings in the higher order effects as analytic thermodynamic

terms (rather than merely mathematical or empirical approximations) it is

a more flexible theory for predicting other effects, such as the influ-

ence of changes in pressure, stress, electric field, etc. The new

theory, for the same reason, should also be more amenable to the

incorporation of ideas from statistical mechanics; and to compositional

and kinetic extensions such as Couchman's (8) T  theory and the

time-temperature transformation concepts of Enns and Gillham (9) .

1.	 Expansion in Terms of Undercooling.

The initial situation to which the formalism described above is

applied is a system which is temperature undercooled below a normal

(STP) transition point.

6
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(a) Central features of the new approach.

As outlined in the previous section it is possible to

construct a useful, and apparently overlooked, formalism by what in its

barest 'orm is the expedient of expanding the effective free energy of

the transformed nucleus in a Maclaurin series in 0 (the degree of

undercooling), and then utilizing thermodynamical relations to evaluate

the expansion coefficients. For example, if we take

S = g(8) = g(0) + g'(0)8 + (1/2)g"(0)8' + ... 	 (12)

= a0 + a 18 + a20 2 ...	 (13)

then 9'(0), which means (89/36) p at 8 = 0, can be found as follows,

A	 AT30	 8T	 ae	 STP	 P	 P	 P
but

Gs - G  = Ha - He - T(S5 - Sa ) ,

so that

g = ((10 - Go , /V0 = h - Ts,

where

h E (Hs ' Ha )/vs and s = (Ss - Sa) /vs.

Carrying through the operations req,sired,
r	 1

Pr,
	 aGa

( T	 v ' (( 8T )	( 8T )
P	 L	 P	 Pi

1	 ays

B
{G S - Ga) (aT)

P

_ - v1 (Ss - Sa ) - gas,
s

(14)

(15)

(16)

(17)

(18)

(19)

7
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where use has been made of the thermodynamic relations S = - (eG/aT)p

and thermal expansivity a a = (WIT)p/v.

(b) Calculations of the coefficients.

Further reduction of Eq. (18) gives

A)_ - T - g( â  	(20)

P	 P
and thus, using Eq. (13) at T = T t , or 0 - 0, we obtain

I
ai = S I M s A	 _ + T=	 (21)

P ®-0	 t

because 9(0) is zero (when T = T t). In a similar fashion, it can be

shown that

as	 as	 a
g"(8)v

l 
(
 

IT	aTa) + a($  Sa)
A	 p	 B

	

a^	 (22)
.as A. 	 _ g(IT )p

After some reduction, Eq. (22) evaluated at 8 = 0 gives

g"(0) : - (Cp)^ - (CD)a +:M
	 (23)

v0Tt	 T 

An examination of Eqs. (12)-(23) reveals that

ao = 0. a  - h/Tt.

a2 - -(ACp/2voht ) + (aoht/Tt). ...	 (24)

(c) Results.

The results obtained through the series expansion will

now be discussed. These results will be interpreted for both first and

second order Ehrenfest transitions. These mathamatical results will

8
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then be used to give semiquantitative results for both classes of

transitions in representative systems.

First order transitions:

A revisitation of Eq. (9) with the incorporation of the

expansion derived in the previ;,us sections gives a critical nucleus

r  = -2T/g = -2T/(a 18 + a28' + ...),	 (25)

s	
2t(Tt/0)	

1	

(26)

rc = -	 ht	 1 - ((ACp/2vAht) - GO 8 + ...

where ht is a negative number for an exothermic transition.

Similarly, incorporation of Eq. (10) with the expanded results

gives an activation energy barrier

= 6s )T 3 /g2_	 °	 +	 2+	 _dGc	 (1 /3 	 (16^r/3)x /(a18	 a28	 .. )	 (21)

(16w/3)T3(Tt/8)'

6Gc =	 (ht)

^	 1
1 - ((ACp/2v0ht ) - a0  8 + ...

These equations reduce to the conventions! expressions given in

Eq. (11) when the higher-order correction terms are neglected. Thus

as a result of the expansion of the frme energy in a Taylor series, we

have explicit, convenient, and (in principle) experimentally accessible

correction factors for first order homogeneous nucleation theory.

Second-order transitions:

In a second-order Ehrenfest transition, since the latent heat is

zero, the conventional expressions given in Eq. (11) are physically

meaningless because in both cases the denominator is zero. However,

using the results derived in the proceeding section for rc and AG C,

(28)



meaningful results for the critical nucleus size and critical activation

energy for second order transitions can be determined. Thus

evaluating Eq. (26) for the case where h t = 0 gives a critical nucleus

4Tv6Tt

rc (AC 8

Similarly, evaluating Eq. (28) for the case where h t = 0 gives

an activation energy barrier

2
(64a/3)13u0Tt

^Gc -	 (ecp) o

There is evidence that the interfacial energy T = 
TMO 

between

phases separated by a second order transition may have a zero value at

the equilibrium second order transition temperature. (10) However on

the basis of our continuing investigation we suspect that at a degree of

undercooling 0 = T - TV which is the point of concern in the present

argument, I will not vanish because the curves for the total surface

energies T(a) and T(0) have different slopes 31(a)/aT and 3x(s) /3T

(Fig. 3). In the case of the glass transition in polymers where

Tt = Tg , a corresponds to the rubbery (liquid) state and 0 to the

glassy state. The underlying physical phenomenon is the existence of

molecular fluctuation which give rise to the formation of a small embryo.

Hence a mathematical formulation for applying classical nucleation

theory to second order Ehrenfest transitions is found through the

expansion of the Gibbs free energy in a Maclaurin series.

(29)

(30)

10



(d) Numerical results for undercooled systems.

A semiquantitative graphical representation of the results

is given in Figs. 4-9 using typical data for the first order liquid to

solid transition of water and the quasi-second order glass transition of

polystyrene. In Fig.' 4 and Fig. 5 the critical parameters for a

first order transition are plotted against the degree of supercooling

using both the conventional and expanded approaches. These plots

serve to give an order of magnitude estimation as to the size of the

to factor" discussed earlier. Figure 6 shows a relationship

similar to the qualitative representation of Fig. 2 in which the free

energy is plotted against the cluster size for various degrees of

supercooling. The peak of each curve gives the values for r  and Gc.

The values of the data were collected from various sources in the

literature and are listed in Refs. 11 and 12.

Figures 7 and 8 graphically show the size of the critical

parameters as a function of assumed interfacial energy between the

glassy and rubbery states of polystyrene at a fifty degree super-

cooling. The use of an assumed interfacial energy is a consequence of

the	 lack of data of this type in	 the	 literature. The values chosen,

although somewhat arbitrary, are	 believed	 to be	 of	 the proper

magnitude for	 such systems. Figure	 9	 shows the	 variation of the

critical	 nucleus	 size with	 the assumed	 interfacial energy for various

degrees of	 supercooling.	 The source	 of	 the data	 plotted	 for

polystyrene is given in Refs. 13 and 14.

As indicated above, appropriate experimental data for the

interfacial energy Tas = I are not presently available. Therefore we

11	 ,IN
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have chosen Y as an independent variable for graphical representation

in Figs. 7, 8, and 9. Current research efforts are directed toward the

determination of appropriate values of Y. These plots serve to provide

guides for the design of relevant experiments to measure this interfacial

energy.-

2.	 Expansion in Terms of Applied Hydrostatic Pressure.

The formalism developed earlier and applied in the previous

section will now be utilized to predict the effects of an applied

hydrostatic pressure.

	

'	 (a) Predicted effects of 	 pressure. hydrostaticY	 P

As outlined earlier, the main point of the theory is the

expansion of the free energy in a Maclaurin series.

This expansion in terms of AP = P-Po, where Po is the initial

	

r	 pressure of the system, may be expressed as follows

g = g ( AP ) = g(0) + g'(0)AP + jg"(0)(AP) 2 + ...	 ( 31)

= b  + b 1AP + b2 (AP) 2 + ...	 ( 32)

where, for example, b 1 = 9'(0) = (ag/aP) T Evaluated at AP = 0. It

should be noted that g is also a function of temperature and thus g

evaluated at AP = 0 is not necessarily zero unless the function is also

evaluated at the normal temperature for the transition at the initial

pressure of the system. Alternately stated, the function is also

evaluated at a degree of supercooling 0 equaling zero as in BC-1. (15)

Thus for example a system which is initially at atmospheric pressure

(Po = 1 atm. ), g(0) equals zero when the function is evaluated both at
0

P = Po or AP = 0 and at the normal transition temperature T = T  ore

12



= 0. Since this is the case in the present discussion, b  = 9(0) in Eq.

(32) will be zero.

From the definition g = AG/us and relations su ;h as u  =

OGa/3P)T , and 0a = -(alnua/3P)T for the volume and compressibility of

the a-phase, it follows that

r	 i	 r	 i

	

_	 _ 1 I acs	aca	 _ ! cs-ca 
a'00
	

1 1	 (33)
8 (0) - (aAP )T	 ( aP )T 	 vs I(aP )T	 ( aP )TI	

(( vs :)(aP )T 
I I

L	 J	 L	 J I

Thus at AP = 0 and 0 = 0 we have

g,(0) = 
b 

= vs-va = AV
1	 vs	 vs

where Au = us - ua . Note that G s - G  in Eq. (33) is zero for the

reasons discussed previously.

In a similar way,

r	 i	 r	 1	 r	 i

1 av	 av	
I_1 1	

ays 
I	 I	 ass 	a	 II (3S)

s"co )	 a

	

= v1 1 (aPs) 	 I	
TI (vs-va)(aP ) I + 1 s( a—P -j + (	

s011
s I	 T	 T I	

s I	 T I	 I	 T	
T 

I I AP=()
L	 i	 L	 i	 L	 i

After reduction and evaluation at AP = 0 and e = 0
r
I v 	 (v v )B I

I8'(0) = b2 = 1-11
 
(aa - 8s) + --^ a ^I
	 (36)

^a	 s	 ,

Summarizing the results of the expansion

g(0) = bo = 6G)	 = 0	 (37)

vsIAP=O

v v
9'(0) = b i = — V	

= vv	
(38)	

E

13
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b2	(- -40 +vaAv)
a	 a

(b) Results for a first-order transition.

Use can now be made of Eqs. (9) and (10) by

incorporating the results of the free energy expansion to obtain

expressions for the critical nucleus size and critical energy barrier for

a first order transition occurring isothermally under the influence of an

applied pressure. The critical nucleus size is found from Eq. (9) to be

(39)

r  = 2Y/g = -2u/(b0

r -
c

V
-Av—vAP - 11 (^aho

a	 ^	 a

hb 1AP+b2 (AP) 2+ ...)	 (40)

-2T	
(41)

- 0̂Av)i (AP) 2 + ...
a	 ,

Similarly the critical energy barrier is found to be

AG =
(16w/3) T3	 (42)

va
^P - 1(v°tAa - !–OA

(AP)2 i 2

^a	 a	 a	 ,

Thus relatively simple expressions have been found for rc and AGc

for phase transitions induced by the application of pressure.

(c) Results for second-order transitions.

As in the previous section, expressions for r  and A 
GC

can be found for second-order transitions which occur in the presence

of an applied pressure. For a second-order transition

vQ = V  or	 AV = 0
	

(43)

so that the value of g reduces to

_w (AP)2	 (44)
14



Therefore the theoretical value of rc in a second-order transition,

induced by applied pressure, is found to be

4Y	 (45)
rc - 4S— (^P)T

Similarly, the theoretical value for the critical energy barrier is

AG = (64r 3 V
C	 (ell) 2 (AP)

3.	 Expansion in Terms of Applied Tensile Stress.

The new approach will next be applied to the case of an

applied tensile stress.

(a) Mathematical development in terms of stress.

The same type of derivation which was carried out for

the case of applied pressure will now be developed for the application

of a tensile stress. Although very similar in some respects to the

previous case, there are some important differences which require a

rather detailed presentation, rather than merely treating the stress as a

negative pressure. Starting in the same way as for Eq. (31) we have

g = g(o) = g(0)+g'(0)o+Jg"(0)02;- ...	 (47)

=W +b' o+W os + ...	 (48)

0	 1	 2

where o = F/Ao is the nominal stress and g'(o) denotes (ag/ao) P,T at o

= 0. This derivative can t e expressed as follows

(4)	 = (^)	 ( aF)	 = Ao()	 (49)
P,T	 P,T	 P,T	 P,T

where A  is the initial cross-sectional area.

(4b)

15



Carrying through the required operations
r	 i r	 i

aG	 aGa	
G

	

8 1 ( 0 ) = ( a8) = A(A(!&)= A{	 (—^)	 ()
	 I - I

(V 230	 aF	 v l aF	 aF	 (	 v	 aF

P,T	 P,T	 0 1 	 P,T	 P,TI I	 S	 P,T I

L	 J L	 J

Use will- now be made of the thermodynamic relation (aG/aF) P,T = -L.

Thus at 0 = 0 or F = 0 we have
r	 1

8'(0) = bl – AI	 v	 I – v
	

A	 (51)

a	 s
where AL = LS - La and 9(0) is zero when 0 = 0 or F = 0.

In a similar fashion, it can be shown that

2	 r aLa 	aLs	 r(La-LS ) av s	 I

g"(0) _ ( aa 2)A^i 	 = A^^i ( aF )	 (aF )P^TI (--2—(aF )

	

10=0	 ^ I	
P,T	 I I	 vO 	P,TI

L	 J L	 J

r

1vs( )	 -8(,Vo)	 I	 r	 i
1	 aF	 aF	 1 av	 I g a2V
1	 P,T	 P,T I ( ^)	 + I (--:	 0	 1}

1	

V02	

1 
aF P,T	

1 

V0 aF	
P,TI 

o=o
L	 J	 L	 J

After reduction, Eq (52) evaluated at 0 = 0 gives

	

r	 I	 r

AL
f.

	

Ig'(0) = b r = { 1 1 ( L)	 ( L ) I + 1 (	 )( af	 ()As
2	 2v-- YA a	 YA S I	 ( v^	 aF P ^ T I

	

L	 J	 L	 J

where use has been made of the relation (3L/3F) = L/YA0 where Y is

the Young's modulus.

Collecting the resulting coefficients,

(50)

0=0

(52)

(53)

(54)'	 AG
8( 0 ) = b  = v^ 

I0
=0 = 0

16



'= Al - (----^- _ -ALA

	

8 (^) = b l	 v	 v	
(55)

a	 s

'^8"(0) = b2	 (2v ^(YA)	 (5) I 
+ I(vL)( OFs )	

I
}A 2	 (56)

	

O L 	a	 l3j	 L R	 P,Tj

(b) Results for a first order transition.

Followin, the procedure outlined previously for the case

of applied pressure, one can find the expressions for r  and AGc for

the case of applied stress.

rc = -2T/g = -21/(b'o b'o+b'o2+ ...)	 (57)

r  =	 -21	
(58)

avi r-(ALAo) + 
{
2v ^ r (YA )	 (YA) +^vL(aFs)	

i

I}o2A2

	

B	 BL	 a	 0j L B	 P,Tj

Similarly the critical energy barrier is

AGc = (161r/3)1 3 /g = (16 ,ff/3)jr'/(b' o b ' o+b'o 2 + ... ) 2	 (59)

1	 2

AG =	
(161r/3)11	 (60)

C ( -AL— + 1 ' (L ) - (L ) i o2A2 + IAL 
(ate) 

io2A2
)2

	

vs 	 2v, ` YA a YA 
Si	

`vs 
OF P,T^	

J

Thus through the expansion of the free energy in a Maclaurin

series one can derive expressions for the critical nucleus size and

critical energy barrier for a system undergoing a first order phase

transition under the influence of an applied tensile stress.

17
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(c) Results for a second-order transition .

Likewise the expressions for rc and dGc can be found for

a second-order transition by adjusting the first order expressions to be

consistent with the thermodynamic criteria of second order transitions.

Fora second order transition,

Le =L0 or AL=0	 (61)

Thus the theoretical value of the critical nucleus size in a

second order transition in the presence of a tensile stress is

4TYaY^

rC = OT(AY)

where AY = Y^-Y^.

The theoretical value• of the critical energy barrier is then

found to be

s 2
(64v/3)1'Y Y^ S

6Gc =	 o-a)  2

d.	 Investigations of Polymer Solid-Liquid Interfacial Energy.

Due to the importance of the interfacial energy term in the

expressions derived in the previous sections, a great deal of effort was

put forth searching the literature for such data. As mentioned earlier,

the interfacial energy between two "phases" in a second order transition

is a quantity which customarily is believed to be zero at the normal

transition point. However, as explained, the value may be non-zero at

a degree of undercooling or under an applied pressure for example.

Because this way of looking at this interfacial energy is somewhat novel

and arises due to our particular interest in this situation, it is not

surprising that mention of this quantity is not found in the literature.

i

(62)

(63)

18
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However, what is surprising is that there is relatively little data

available on the interfacial energy between the solid and liquid phases

(T SO in polymeric materials. As a result of this lack of data and the

information collected in search )f a value for the glass-rubber

interfacial energy, an investigation into the problem of evaluating TSL

was undertaken.

(a) Methods of determining TSL for polymers.

In this investigation, four methods were used to evaluate

the liquid-solid interfacial energy. In method I, the interfacial energy

was computed using the simple relationship

TSL - IS - TL	
(64)

where TS is the solid surface tension and T L is the liquid surface

tension. In this method T L was found at the melting point T  through

the use of a large amount of available data for liquid surface tension

and OT L/2T) . The relationship

p S n
IS = (P ) TL ,	 (65)

L

where pS and PL are the densities of the solid and liquid phases and n

is the MacLeod exponent (generally found to be about 4),	 was then

used to compute YS .	 From the difference between IS and TL , the value

of TSL is then found.	 The results of this method for various polymers

are shown	 in	 Fig.	 10a	 plotted against the molar heat of fusion. This

type of plot is based on the work of Turnbull (16) on metals and Thomas

and Stavely (17) on organics where similar plots for these materials yield

straight line relationships. As a result of these linear correlations, the

solid-liquid interfacial energy can easily be estimated for a class of

materials with knowledge only of the molar heat of fusion, a quantity

19
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which is much more readily available in the literature and obtainable

experimentally.

As can be seen in Fig. 10, the first method does yield a somewhat

linear relationship. However, this method does not acccunt for the

polarity-of the polymer and thus is probably not very accurate. (18)

In method 11, the polarity

derived by Wu(18):

4TdTd
S	 + TSL 

= ^S	 L - Td+Td .
S L

is considered by using a formula

PP
4^StL	 (66)

TS+^L

where Td and Td are the dispRrsive components of the solid and liquid

surface tension and T  and SL are the polar components of the solid

and liquid surface tension. Using values given by Wu (18) for the

quantities in Eq. (66) the result for TSL is shown in Fig. 10a.

The third method used to estimate TSL is that of Owens and

Wendt (19) . Their equation is

TSL = TS - >rc	 (67)

where T  is the critical surface tension. Again using data given by

Wu (18) for rc , the results are shown in Fig. 10b. It should be pointed

out that the values of T  which were used are at 20°C and not at T 

anki thus some error may have been introduced due to this fact but it

is thought that the plot provides useful information.

The final method (IV) for estimating ISL is the same as that

described by Turnbull (16) and Thomas and Stavely (17) . In this

method, an estimate is made for the activation energy barrier and

Eq. (11) is solved for the interfacial energy TSL for a certain degree of

20
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undercooling 0. Using similar approximations to those of Turnbull (16)

and Thomas and Stavely (17), the results obtained for TSL are shown in

Fig. 10c.

This fourth method appears to give the best results and is by far

the easiest of the f6ur methods to obtain data and estimate TSL*
	 1\

Furthermore, by refining the assumptions made in the analysis, even

greater accuracy may be possible.
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SECTION IV

SUMMARY AND COMMENTS
i

In	 this	 work we	 have developed	 a	 formalism for	 predicting	 the

critical nucleus	 size and activation energy for second order Ehrenfest

transitions.	 Correction	 terms	 are	 also	 derived	 for	 first	 order

transitions	 which	 break	 from	 the customary	 approximations	 normally

employed in classical nucleation theory. 	 In completed work, the effects

of	 undercooing,	 hydrostatic	 pressure,	 and	 externally	 applied	 tensile

stress have been rigorously investigated. 	 In the case of temperature

undercooling,	 numerical values for the critical quantities were obtained

using a somewhat arbitrary range of values for X the interfacial energy.

No such attempt was made for the cases of applied pressure and stress

due to the uncertainty of valua- 	 for this term.	 Later work	 on	 this

problem may have given a possible solution and method of estimating the

interfacial	 energy	 between	 two	 "phases"	 undergoing	 a	 second	 order

transition.	 This method concerns the difference in slopes of the T vs.

T curves for the different phases as described in this report. 	 However

due to the lack of T vs. 	 P and T vs.	 c data,	 such an estimate is still

not possible for the other two situ-tions described herein. I

Work is now being done in which a Claussius-Clapeyron 	 relation is

used to attempt to find T vs. P data and thereby reasonable values for
t

the interfacial energy in the case of applied hydrostatic pressure.

Work is also continuing in which the effects of an 	 applied	 electric

and magnetic field	 are considered.	 It	 is	 hoped that	 such a situation

will be more conducive to experimental investigation	 and	 thereby yield I

24



experimental evidence for the ascertions made both in completed work

and work still to be undertaken.

A number of papers and presentations have resulted from work

described in this report, and our efforts are continuing in anticipation

of many-more fruitful developments as the research proceeds.

1

F 	 1
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FIG. 2. The two opposing energy terms which give rise to a critical
radius r  and a critical energy barrier AG c for nucleation.
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Predictions of nucleation theory applied to Ehrenfest thermo-

dynamic transitions : II. The effects of pressure and stress.

K. W. Campbell and R. E. Barker, Jr.

Department of Materials Science, University of Virginia, Char-

lottesville, Virginia 22901

(Received	
Abstract

This paper is a sequel to an earlier one, BC-I (J. Appl. Phys. 56, 2386

(1984)), on the applicability of classical nucleation theory to second-

order transitions in the Ehrenfe.st sense. In each case the approach was

to obtain the critical size r c and energy barrier A 
e 

fo r the growth of

a nucleus of S-phase in an a-phase matrix by a Maclaurin series expan-

Sion of the free-energy-density g= (GS-Go )/u a as a function of 0 (in

BC-I) and of AP and Ao in this paper where 0=(T-T t) is the degree of

undercooling !and AP and Ao are analogous terms for the hydrostatic pres-

sure shift and tensile stress shift away from the equilibrium transi-

tion. The expansion coefficients were determined by the use of thermo-

dynamic relationships. For second-order transitions, r^ 41 ,u Tt /AC p02,

rc=41/AO (Ap) 2 , and rC. 41YaY
0
/AY(Ao) 2 , respectively for the three cases.

The terms ACp , A6, and AY denote the differences in heat capacity,

compressibility, and Young's modulus, e.g., AY =Y0-Yc . The interfacial

energy 
10 

is denoted by T. The activation energy barriers for the

cases developed in this paper were A G=(l6n/3)T'/(A0)2(&p)• and

AGE (64n/3)1'Ya 2 Y0 2 /(AY) 2 (Ao) 4 . More complicated expressions are given

in the paper for the rc and A 
c 

fo r first-order transitions. In the

long run these expressions may prove more useful than the ones for

second-order because of the modifications expressions for the kinetics

of transformations.

1
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Ab • 4/9 xr 3 g + 4 nr2y

AOc a energy activation barrier - 16irr3/3g2

rc _- critical nucleus radius - -2y/g

FIG. 2. Thetwooppoeia gemV termawhiobpve rise tote rhical radian
and a critical energy barrier A y, for nucladw

barrier" that must be overco me before the continued growth
of theft nucleus can take place.

dY, = (16rr13h'1g2 =16.76 ele. 	 (10)
This barrier, and the critical size r, are of course both de-
pendent on the degree of undercooling, through Eq. (7),
therefore

0
B

f

'k 1 Where Ve is the volume of the 0 nucleus, va is the molar
volume and A.0 is the interfacial area of P. If the growing
nucleus has more than we type of interface, diem the term
AM y., would imply a summation over the relevant area.
In the pnesaat paper, an extra term, 	 to the
elate strain energy when v, is not equal to vo in solid
phases, will be neglected.

Thus, according to nucleation theory, local density
fluctuations will lead to the formation of a email nucleus of#

i	 phase within an a-phaee matrix if the temperature is less
than the normal transition temperature T, for a	 where

{ p is the stable phase when T< Tr (Fig. 1). The total inter&-
cial energy A.0 y.0 will oppose the enlargement of the nu-
cleus, and a bulk-free energy gVa will encourage growth
(Frig. 2^ The term

g*60 — G. )/ve	 (3)

repieaents the free energy change per unit volume of trans-
fo rm d material. Equation (2) now becomes

AY = 8Va + YAa •	 (4)

C. The ewtomary awoAnad"
In the standard treatments, AG = AH — TAS is ap-—_	 2 T /B)

proximated, at a degree of undercooling 	 r`	
2y/s,0 =	 (11)

h
8 = T, — T	 (S) and	 t

by AH = AH, and AS = AH, /T, which may be seen to gi (6)	
A ` _ (16rr/3ry'/s^ 8 Z = (16rr/3)y 3(T, /8)e	

(12)AG = AS,0, with S, = AH,/T,

t'
r

or

g = s,8, with s, = A,S,/ve.	 (7)

The standard treatments next proceed by taking 8 (.I G )/
8r = 0, where r is the radius of the spherical nucleus for
which

Vs = (4/3)v73 and As = 4rr2.	 (8)

This gives the size of the critical nucleus r, to be

r. = — 2y/g.	 (9)

For the stable er- ofl transition, g will be negative (g = 0 for
the equilibrium transition). Substitution of Eq. (9) back into
Eq. (4) gives the usual type of expression for the "activation

a

G	 +- - ------ 

iAG • (G^-Ga)<0

8 • (Tt*-T)
1

	

1	 ^

1	 ^

T	 T

where h, = AH, /ve is the latent heat per unit volume for the
transformation at standard pressure.

NEW THEORETICAL APPROACH

A description will now be giver for a mathematical for-
mulation of nucleation theory in which the customary ap-
proximations discussed earlier are; avoided. The result is a
number of expressions which are unobtainable using the
conventional methods.

A. Proposal of a mom rigorous appra ^ ch

The twelve equations above summarize an elementary
view of homogeneous nucleation theory for the spatial case
of spherical particles. The need for a more rigorous formal-
ism in which the customary approximations are not applied
is evident. In this new theory, such a formalism is developed
through the assumption that d Y and therefore g can be
expanded in a Maclaurin 's series in 8, the degree of under-
cooling. This series is then reduced and manipulated
through the use of Maxwell's relations and other thermody-
namic operations. As a result of this rigorous treatment, the
following features are developed: (1) nonlinear correction
terms result for first-order thermodynamic transitions, (2)
the critical nucleus size and barrier height for second-order
transitions (in the Ehrenfest sense), and (3) the possibility of a
formal extension of nucleation theory to even higher-order

Since the new theory brings is the higher-order
analytic thermodynamic terms (rather than merely

R. E Barker, Jr. and K. W. Campbell	 2387

FIG. 1. For a phone trwition a— # to oem at a degree of uve cooling B, 	 transition.
Gp mot be lea than C, where G is the molar Gibbs' free energy.	 erects as
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mathanaticil or empirical approximations) it is a more fiezi-
ble theory for predicting other effects, such as the influence
of changes in pressure, electric W etc. The new
theory, fbr the mine resson, should also be more amenable to
the incorporation of ideas from statistical mechaniea; and to
compositional and kinetic extensions such as Couchman'ss
T,r theory and the timetemperature -transformation con-
cepts of Enos and O llum 9

IL Central features of Ow now approach
As outlined in the previous section it is possible to con-

struct a useful, and apparently overlooked, formalism by
what in its barest form is the expedient of expanding the
effective free energy of the transformed nucleus in a Ma-
claurin series in 8 (the degree of undercooling), and then
ultilizing thermodynamical relations to evaluate the expan-
sion c oeMents. For example, if we take

g = g(e) = g(0) + g'(0)e + (1/2)g"(0)8 2 +...

=ao+ ale +a28 2 +.•.	 (13)
then g'(OJ, which means (ag/a8 ), at 8 = 0, can be found as
follows,

l ae ),-	
(14)

l aTl, \ a8	 aT/P 	- l /,' 
but

Go - G. = Ha - HQ - T (So - S.), (15)
so that

g-(Ga - G. Vva = h - Ts, (16)
where

h -(Ha — Ha )/va and s-(Se - S. )/ve . (17)

Carrying through the

l

operations lraquired,

dT l/,	 O -L\ T 41 - k T IP 1

- --1--{Ga - G.)( 8T l p
a (18)

_ - 1-{Sa - S.) - gaa, (19)
va

where use has been made of the thermodynamic relations
S = - (aG MT ),p	 and thermal expansivity = a = (av/
,51T ),Iv.

C. Caloulatbro of the ooeAldents
Further reduction of Eq. ( 18) gives

( a8 l __ _ h
aT	

aaa	 (20)
/P	 T - ^ aT ,'

and thus, using Eq. (13) at T = T, or 8 = 0, we obtain

(Okv 
l	 h21

a, =g'(0)—lPI a-o — + T, 	1 )

becauseg(0) is zero (when T = T,). In a similar fashion, it can
be shown that

919) - v \ T T/ +a^e-S.)
A

(( a^ll 410

-aalaTl, - 	 I, '	(22)
After some reduction, Eq. (22) evaluated at 8 - 0 gives

g"(0) _ _ (CP)o - (CP )a + 2aahr	 (23)
vaT,	 T,

An examination of Eqs. ( 12}-(23) reveals that

ao = 0, a, =h/T„
a2 = - (dC,12vah,) + (aah,/T,(... 	 (24)

RESULTS
The results obtained through the series expansion will

now be discussed. These results will be interpreted for both
first- and second-order Ehrenfest trambons. These math-
ematical results will then be used to give semiquantitative
results for both classes of transitions in representative sys-
tems.

A.First-order trwo tloro

A revisitation of Eq. (9) with the incorporation of the
expansion derived in the previous sections gives a critical
nucleus
r. _ — 2r/g = — 2y/(a,8 + a28 2 + ...),	 (25)

_	 27(T,18)	 1	 (261r`	 h,	 1- [(dC,12vah,)-aa]8+...'
where h, is a negative number for an exothermic transition.

Similarly, incorporation of Eq. ( 10) with the expanded
results gives an activation energy barrier
dY, _ (IW21W 3/g2 = (16w/3)ry'1(a,8+ a202+...)2, (27)

(I 67/3)y 3(T,/8 )2
(h,)2

1
X 1- [(dC,/2vah,)-aa]282+... 	 (281

These equations reduce to the conventional expressions
given in Eqs. (11) and (12) when the higher -order correction
terms are neglected. Thus as a result oft he expansion of the
free energy in a Taylor series, we have explicit, convenient,
and (in principle) experimentally accessible correction fac-
tors for first order homogeneous nucleation theory.

B.Second-order transitions
In a second-order Ehrenfest transition, since the latent

heat is zero, the conventional expressions given in Eqs. (11)
and (12) are physically meaningless because in both cases the
denominator is zero. However, using the results derived in
the preceding section for r, and d .̀9,, meaningful results
for the critical nucleus size and critical activation energy for
second-order transitions can be determined. Thus evaluat-
ing Eq. (26) for the case where Al, = 0 gives a critical nucleus
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PC : "T,
(dCr)B^^	

(29)

Similarly, evaluating Eq. (28) for the cue whe re b, — 0
Siva an activation energy barrier

d S °
 — ("ir/3)y a0 T2	

30)(AC 12e•	
( 

The re is evidence that the interfacial energy r = Y1W
between phases separated by a second-order transition may
have a zero value at the equih'brium second-order transition
temperatum" However on the bask of our continuing in-
vestigation we suspect that at a degree of undercooling
8 — T — T„ which is the point of concern in the presort
argument, y will not vanish because the curves for the tote:
surface energies y(a) and y( 0) have different slopes d-1y(a)1dT
and M P V8T. In the case of the glass transition in polymers
where T, = Ts , a corresponds to the rubbery (liquid) state
and,6 to the glassy state. The underlying physical pheno.
menon is the existence of molecular fluctuation which give
rise to the formation of a small embryo.

Hence a mathematical formulation for applying classi-
cal nucleation theory to second-order Ehren.°est transitions
is found through the expansion of the Gibbs' free energy in a
Maclaurin series.

C. NtNnarical resuft

A semiquantitative graphical representation of the re-
sults is given in Figs. 34 using typical data for the first-order
liquid to solid transition of water and the quasi -second-order
glass transition of polysytrene. In Fig. 3 and Fig. 4 the criti-
cal parameters for a first -order transition are plotted against
the degree of supercooling using both the conventional and
expanded approaches. These plots serve to give an order of
magnitude estimation as to the size of the "correction fac-
tor" discussed earlier. Figure 5 shows a relationship similar
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FIG. 4. The dependence of the free energy barrier on the degree of super-
cooling for the transiti m of liquid water to ice for both the conventional and
expanded approach-.

to the qualitative representation of Fig. 2 in which the free
energy is plotted against the cluster size for various degrees
of supercooling. The peak of each curve gives the values for
r, and G, - The values of the data were collected from various
sources in the literature and are listed in Refs. I 1 and 12.

Figures 6 and 7 graphically show the size of the critical
parameters as a function of assumed interfacial energy
between the glassy and rubbery states of polystyrene at a fifty
degree supercooling. The use of an assumed interfacial ener-
gy is a consequence of the lack of data of this type in the
literature. The values chosen, although somewhat arbitrary,
are believed to be of the proper magnitude for such systems.
Figure 8 shows the variation of the criti: r l nucleus size with
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i n$ for the transition of liquid water to ice for both the conventional and	 supercooling for the transition of liquid water to ice for both the convention.
expanded approach. 	 al (solid curve) and expanded (dashed carve) approaches.
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the assumed interfacial energy for various degrees of super-
cooling. The source of the data plotted for polystyrene is
given in Refs. 13 and 14.

As indicated above, appropriate experimental data for
the inteefacial energy y, p = y are not presently available.
Therefore we have chosen y as an independent variable for
graphical representation in Figs. 6, 7, and S. Current . re-
search efforts are directed toward the determination of ap-
propriate values of y. These plots serve to provide guides for
the d=Zn of relevant experiments to measure this interfacial
energy.

In this paper we have developed a formalism for pre-
dicting the critical nucleus size and the activation energy

0	 1	 2	 3	 4	 5
ASSUMED INTERFACIAL ENERGY y(10 -0 J/m' )

FIG. 7. The the mere battier as a f6n&,Jm otusumed interfacial mercy
for the 8m ttanddoa 0t polystyrene at a mpercoolins of 50 des.
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FIG. S. The cridW nuclau size as a fbac ion of nsnmed interfacial a wee
of vadow desraes of supercw1h* for the Shm um ddm of polystyrene.

barrier for second-order Ehrenfest transitions. Correction
terms are also derived for fim-order transitions which break
from the customary approximations normally employed in
classical nucleation theory. A semiquantitative analysis of
this new approach was then presented to give a physical
sense to the theoretical relations. Thus as a result of expand-
ing the Gibbs' free energy in a Maclaurin series, a mathemat-
ical model is developed for applying classical nucleation the-
ory to second-order Ehrenfest transitions.
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Abstract

This paper is a sequel to an earlier one, BC-I (J. Appl. Phys. 56, 2386

(1984)), on the applicability of classical nucleation theory to second-

order transitions in the Ehrenfest sense. In each case the approach was

to obtain the critical size r  and energy barrier AGc for the growth of

a nucleus of 0-phase in an a-phase matrix by a Maclaurin series expan-

sion of the free-energy-density g= (GS-Ga)/u a as a function of 0 (in

BC-I) and of AP and Ao in this paper where 0=(T-T t ) is the degree of

undercooling !and AP and Ao are analogous terms for the hydrostatic pres-

sure shift and tensile stress shift away from the equilibrium transi-

tion. The expansion coefficients were determined by the use of thermo-

dynamic relationships. For second-order transitions, r^ 41u^T t/AC 02,
P

rc=41/AO(Ap) 2 , and r  =41Y a y 
0 
/Ay(&0)2 ,  respectively for the three cases.

The terms ACp , AB, and AY denote the differences in heat capacity,

compressibility, and Young's modulus, e.g., AY =YS-Ya . The interfacial

energy 
Tao 

is denoted by T. The activation energy barriers for the

cases developed in this paper were A ^=(167n/3)V/(A5)2(Ap)• and

AGE (64n/3)71'Ya2 Y B 2 /(AY) 2 (Ao) 4 . More complicated expressions are given

in the paper for the r  and A 
c 

for first-order transitions. In the

long run these expressions may prove more useful than the ones for

second-order because of the modifications expressions for the kinetics

of tc arts format ions.
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Introduction

In a previous paper (BC-I) l on this general subject, a formalism

was developed for the application of classical nucleation theory to

first-arid second-order thermodynamic transitions (cr*D) in the Ehrenfest

sense. This was accomplished through the expansion of the Gibbs' free

energy in a Maclaurin series in the degree of supercooling 0.	 By using

this approach, significantly improved expressions were obtained for the

size r  and the energy barrier AGc of the critical nucleus for first-

order transitions. Moreover, physically meaningful expressions also

were obtained for r  and AG for a system undergoing a second-order

phase transition with the assumption that, in such a transition (e.g.,

order-disorder, normal-superconducting, and (approximately) the glass

transition in polymers), the new phase does not occur spontaneously

throughout the matrix but rather begins locally as nuclei which grow

until the transformation a-*B is complete. For this approach, the

existence of an effective interfacial energy T=Tao between the two

"phases" (or states of aggregation) is essential. However in the usual

theories of second-order transitions T is believed to be zero at the

equilibrium transition temperature Tt . 2 For the purposes of the present

analysis we postulate that the type of transformation of interest (a-+O)

occurs under non-equilibrium (supercooled) conditions with a small but

nonvanishing 1. Furthermore, by the application of pressure, tensile

stress, or electric, or magnetic fields of sufficient magnitude, the

free energy curves G  and G B (for certain first-order transitions) which

cross at more that one point may possibly be shifted to produce a common

tangent, thus simulating a second-order transition. These situations
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(supercooling and shifted free energy) thus lead to the possibility of

nucleation and growth processes for quasi-second-order transitions.

A formalism similar to that utilized in BC-I, wherein the excess

free energy density g= (G
0
- Ga )/u 6 was expressed in terms of the degree of

undercooling, will now be developed in terms of applied pressure p and

tensile stress a. The results for the application of electric and

magnetic fields will be given in a subsequent presentation. The present

derivation, in terms of p and a, will be preceded by c brief outline of

certain relevant features of classical nucleation theory (Crr), with

references to appropriate literature sources for more detailed

descriptions of the ideas and facts, especially about nucleation

phenomena involved with polymeric materials.

The paper concludes with a discussion of the results that are

obtained and the implications of these resulr.s where applied to real

systems.

Review of Classical Nucleation Theo

Before discussing the detailed derivation of the expressions of

interest in this work, a short review of CNT as it applies to this case

is in order. For a more complete description of classical nucleation

theory and phase transitions especially as applied to polymeric

materials see references 1, 3-9.

A.	 The thermodynamic basis of nucleation theory

As is widely known, when a pure system of molecules which exists as

a stable phase a at a given set of inter,:,ive variables (T 1 ,N 1 , etc.), is

subjected to new intensive conditions (T 2'p2' etc.), where a is no

longer the only stable phase but Oic re one or more rrcw phases are

3



stable, then it is possible that the expected transformation a- ► S will

occur only slowly, if at all, within a finite observation period.

According to the precepts of nucleation theory, the reason for this

inhibition of the expected transformation is that molecular fluctuations

and diffusive motion must occur which create a small particle of B

within the a milieu (but see Ref. 9) and that there is an interface

between the a and 6 regions in which the molecules have an excess free

energy Y=T,, per unit area. Thus the true Gibbs free energy change

corresponding to the transformation of a small amount of a into a small

nucleus of B is not merely the so-called bulk thermodynamic value AG

(energy per mole); it is instead

AG=V0 (AG%up ) +AaoTa6	 (1)

where V0 is the volume of the S nucleus, U  is the molar volume and Ano

is the interfacial area of Q. If the growing nucleus has more than one

type of interface, then the term Ano tas would imply a summation over the

relevant areas. In the present paper, an extra term, corresponding to

the elastic strain energy when u  is not equal to u 0 in solid phases,

will be neglected.

Thus, according to nucleation theory, a small nucleus of 6 phase

will form within an a-matrix if the free energy curve of the B phase is

lower than the free energy curve of the a-phase. This can be

accomplished in several ways, for example by supercooling below the

normal transition temperature T  (Fig. la), or by the application of an

external pressure (Fig. lb), or the application of a tensile stress

(Fig. lc).
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Under such conditions the total interfacial energy AQ5Tno will

oppose the enlargement of the nucleus and a bulk free energy gVA will

encourage growth (Fig. 2). The term

represents the free energy change per unit volume of the transformed

material. Equation (1) now becomes

aG= gvA+TAV 	 (3)

B.	 Results for a spherical nucleus

In mueh but nor all of the literature the nuclei of 6-phase ara

assumed to be spherical for simplicity. This assumption will be used in

this paper since we are presently more concerned with the qualitative

features of the phenomenon, and its very exister.ce, than with detailed

quantitative refinements, related to nucleus shape, which we will

address in subsequent presentations.

In order to determine the critical parameters r c and AG shown in

Fig. 2., the free energy is differentiated with respect to the radius r

and the result is set equal to zero.

8(AG)16r=0 at r=rc .	 (4)

The resulting expression for r is termed the critical radius, i.e.,

the radius that an embryo must exceed in order for its growth to be

favorable. For a spherical nucleus wha,re

Va-(4/3)nr l and Ae=4 yrr 2	(S)
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This value, substituted into Eq. (4), gives the critical activation

energy barrier,

	

AGC =(16v/3) T3/g2,
	

(7)

that is the energy barrier which inhibits the continued growth of the 6

phase.

New Extension of the Theo ry

The preceeding basic precepts of nucleation theory can be applied

to both first- and second-order thermodynamic transitions under the

influence of applied hydrostatic pressure and more complicated stress

fields.

A.	 Basic concepts of the new approach

In this new approach a formalism for predicting the effects of

applied pressure and applied stress on r c and AG fo r a phase transition

of any order is developed through the assumption teat AG and therefore g

can be expanded in a Maclaurin series. The coefficients in the series

are then obtained through the use of Maxwell's relations and other

thermodynamic operations. Relatively simple expressions result, in-

volving experimentally accessible parameters, which describe the effect

of	 applied	 pressures and stress	 on the critical quantities AGand rc.

More	 importantly these	 expressions yield physically meaningful

(non-zero) results for AGa nd rc when the derived result" are reduced
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in accord with the theory of second order transitions. These two main

aspects of the theory will now be described in detail, first for the

case of applied pressure and then for the case of applied stress.

B.	 Predicted effects of hydrostatic pressure

As outlined earlier, the main puint of the theory is the expansion

of the free energy in a Maclaurin series.

This expansion in terms of AP=P-P09 where Po is the in_tial pres-

sure of the system, may be expressed as follows

9 = 9(OP) = 9(0) + 9'(0)AP + 2 9'^t.0)(AP)2+... 	 (8)

	

= b 
O + b I AP + b2(OP)2 +.-.	 (9)

where, for example, b l=g'(0)=(ag /aP)T evaluated at AP=O. It should be

noted that g is also a function of temperature and thus g evaluated at

AP=O is not necessarily zero unless the function i- also evaluated at

the normal temperature for the transition at the Initial pressure of the

system. Alternately stated, the function is also evaluated at a degree

of supercooling 0 equaling zero as in BC-I. 1 Thus for example a system

which is initially at atmospheric pressure (Po latm.), g(0) equals zero

when the function is evaluated both at P=P or AP =-0 and at the normal0

transition temperature T=Tt or 0=0. Since chis is the case in the

present discussion, bo=g(0) in Eq.(9) will be zero.

From the definition g=AG/u A and relations such as ua =(aGa / a P)T , and

0
0
= -(ainua /al')T for the volume and compressibility of the a-phase, it

follows that

a
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R=

'tom

I I

i

i'
i

a9 a9 	^ asQ 	acQ 	ca_c^ ay.

dOP) dP) v ^d P)	 d?	 \ v 2 ^ d P T
T	 Q	 R AP=O

Thus at AP=O and 0=0 we have

VQ v a	 Lev	 tli)
VP	 P

where Au=u^-U^. Note that	 Gn—G
N-- a

reasons discussed previously.

In a similar way,

in Eq (10) is zero for the

1	 dv	 av

V	 d P JT a P T
1	 av	 a^ 1	 9

V.2a \aP T	 6P T ^P )T 
AP=O

After reduction and evaluation at AP=O and 0=0

t1 3)
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Summctri,.ing the results of the expansion

g(0) = bo - AG	 =0
v	 (14)
Q I 

Ap=O

vi	
viG

b =^ —va t + ^Av	 152 2	 v	 v	 ( )

c
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2

(l^ P)2

C.	 Results for a first -order transition 	 4

Use can now be made of Egs.(6) and ( 7) by incorporating the results

of the free energy expansion to obtain expressions for the critical

nucleus size and critical energy barrier for a first -order transition

occurring isothermally under the influence of an applied pressure. The

critical nucleus size is found from Eq.(6) to be

	

rc = 2y /g = — 2y/(bo +b,QP+b 2(AP)2-+...)	 c^7,

_2y

c ~	 cl,
Av	 1 va	 P-a	 (AP)2D P -	 p -  Dvv	 2 v	 va	 a	 a

Similarly the critical energy barrier is found to be

Arc
	 06Tr/3)y'
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Thus relatively simple expressions have been found for rc and A c
for phase transitions induced by the application of pressure.

D.	 Results for second-order transitions

As in the previous section, expressions for r e and &G ca n be found

for second-order transitions which occur in the presence of an applied

pressure. For a second-order transition

V _V	 OR ©V= 0	 (20)

a G

so that the value of g reduces to

(21'

2

Therefore the theoretical value of r in a second-order transition,
c

'e induced by applied pressure, is found to be

4y
r C ti	

(zz)

A (APY
Similarly, the theoretical value for the critical energy barrier is

(6 4  ;T/ 3)-_.	 -	 (23)( AP,;O) 2 (  P),"

I I Ad

1

"t

IL I



E.	 Mathematical development in terms of stress

The same type of derivation which was carried out for the case of

applied pressure will now be developed for the application of a tensile

stress. Although very similar in some respects to the previous case,

there are some important differences which require a rather detailed

presentation, rather than merely treating the stress as a negative

pressure. Starting in the same way as for Eq. (S) we have

g = g(O-)= g(0) + g'b)a-+ 2
g it

(0)cr 2 +...	 (24)

= h. + b^1 6. + b,(T + ...	 (25)

where o=F/Ao is the nominal stress and g'(o) denotes (8g/ao) P,T at o=0.

This derivative can be expressed as follows

()	 _ (ag)	 (aF)	 = A (ag)	
(26)

80 P,T	
aF 

P,T 
80 

P,T	
o aF P,T

!!	 ;
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where A is the initial cross-sectional area.
0

Carrying through the required operations

d9_ A a9 _A	 aGQ	 _	 Oa av^ 	 (a?)g (0) d^	 d F	 v	 aF	 aF	 v 2 aF	 ^
P,T )Ip,T	 P,T	 P,T	 ia	 T ^.^

Use will now be made of the thermodynamic relation (aG/aF) pI T -L.

Thus at o=0 or F=0 we have

_(La LQ1^
Ig (0)= b l = A	 VP

-LPL
A	 (2Q) r

v^

where AL=I,A -La and g(0) is zero when o = G or F=O.

In a similar fashion, it can be shown that

a 2 9	 )L
,,

^^t0) = d F 2 A2

	

	 2	 a—=A 
V aF0-=O	 a	 PT

a L^	 (LQ - L^ aye

aF	 2	 aF.
P,T 	 )P.TJ

dg	 aV.	 (29)
V	 -g a
Q a F

PIT	
a F P,T	 a V^ 	 g a2 V

^)
V^2 	 aF PT y 	 dF2 PT	 i

a-=O
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After reduction, Eq (29) evaluated at o =0 gives

i

av2g„(0) = bz
	

L _ L	 +	 z --^	 A2	 (3^)
2v^ YA 

a 
YA

	 Fv;)	
PdF ,T

i

{Z
3

i

where use has been made of the relation (aL/aF) =L/YAo where Y is the

Young's modulus.

Collecting the resulting coefficients,

AG
g(0)- bap= 
	 - 

0	 ,
0- = 0	 (31)

	

-(La La )	 -AL
g'(0)= b ] = A	 y	 =	 v	 A	 (32)

2g,,(0) = b
2 = 1	 L	 L	 + 

	 A2

	

2v^ YA 
a

YA	 FV2 dF 
P	

(33)

F.	 Results for a first order transition

Following the procedure outlined in section C, for the case of

applied pressure, one can find the expressions for r e and AGC for the

case of applied stress.

14



r ^	 -2Y
^(35)

ALAv	 1 
11 

L (L	 DL
vR ^ 2v^ YA Q1YA Q + vR (d F PTj ^2A2l

Similarly the critical energy barrier is

AN 
c 

(16v/3)= 	 y3/g = 167r/3 y3/(h'O+^ja-+ 2(72 - ...)2 (305)

(16 Tr/3)y 3

C

-OLAa- 1 L L 622

vQ 2vG YA Q YA Q
t AL  	 0-2A2 2

VQ ^cl F P,7

Thus through the expansion of the free energy in a Maclaurin series

one can derive expressions for the critical nucleus size and critical

energy barrier for a system undergoing a first-order phase transition

under the influence of an applied tensile stress.

G.	 Results for a second - order transition

Likewise the expressions for rc	 Gand A	 can be found for a

second-order transition by adjusting the first-order expressions to be

consistent with the thermodynamic criteria of second -order transitions.

15
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For a second-order transition,

L
a
 _ L ie OR AL=O 	 3')

Thus the theoretical value of the critical nucleus size in a

second-order transition in the presence of a tensile stress is

39rc	 ( 39)
- 2 (AY

where AY=Y0-Ya.

The theoretical value of the critical energy barrier is then found

to be	 •,p	 ^	 17

(64 -rl/3) `' Y
C	

0- t" ( AY)

Discussion and Conclusions

The mathematical basis for the application of classical nucleation

theory to second-order thermodynamic transitions has been demonstrated.

However, a number of points should be addressed in connection with the

derived results. The expressions for r  and AGc in both the case of

applied pressure and stress contain an interfacial energy term 1. In

the case of anequilibrium, secorid-order transition this term vanishes .2

However, our contention is that under non-equilibrium coudit.ions, such

as described here and in Ref. 1, there is a small interfacial energy

16



difference associated with the region between the a and S-phases, for

example between aggregations of different degrees of order. 	 The

question then arises whether such a transition should still be

considered to be second-order in nature. It is our belief that the

order classification of the transition should remain the sane due to the

fact that the transition itself is unchanged. However the kinetics are

likely to be considerably altered.

Our analysis has shown that thermodynamic concepts do not appear to

preclude the nucleation and growth of a new phase in a second-order

transition	 in	 Ehrenfest's	 classification.	 In fact	 reasonable

expressions for the size and energy barrier in terms of measurable

quantities result. However it may be that the likelihood is small for

actually finding a set of conditions for which the predicted nucleation

and growth can be observed. Even if this turns out to be the case, the

results that we have derived suggest quite significant effects on the

kinetics of first-order transitions.

It should also be nrced that with a slight modification the

equations can be applied to the pseudo-second-order glass transition in

polymers. Compared with the so-called genuine second-order transitions,

the nature of the glass transition isis anomalous with regard to the

direction of the discontinuous juraps of various thermodynamic

quantities, such as the heat capacity	 and	 isothermal	 compressibility,

which appear in the equations for rc and A Gc .	 The changes	 in CP and 6

at Tg have signs opposite to the changes in these and similar quantites

at the transition temperature for genuine second-order transition.1e

In this paper a formalism is developed for the application of

nucleation theory to first-and second-order phase transitions in the

17



Ehrenfest sense. As a result of this approach expressions for the

critical nucleus size and critical energy barrier were obtained for the

influence of applied pressure and stress on the transitions. There are

also implications of important effects on the kinetics of first-order

transitions.
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Figure Captions

Fig. l:	 For a phase transition a "O to occur G S a:ust be less than G 

where G is the molar Gibbs' free energy. This can be accom-

plisbed by (a) supercooling below the normal transition

temperature Tt , (b) the application of an exteci.al pressure

Al', or (c) the application of a tensile stress o

Fig. 2:	 The two opposing energy terms which give rise to a critical

radius rc and a critical energy barrier AG for nucleation and

growth.
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