367 research outputs found

    Perturbations of higher-dimensional spacetimes

    Full text link
    We discuss linearized gravitational perturbations of higher dimensional spacetimes. For algebraically special spacetimes (e.g. Myers-Perry black holes), we show that there exist local gauge invariant quantities linear in the metric perturbation. These are the higher dimensional generalizations of the 4d Newman-Penrose scalars that (in an algebraically special vacuum spacetime) satisfy decoupled equations of motion. We show that decoupling occurs in more than four dimensions if, and only if, the spacetime admits a null geodesic congruence with vanishing expansion, rotation and shear. Decoupling of electromagnetic perturbations occurs under the same conditions. Although these conditions are not satisfied in black hole spacetimes, they are satisfied in the near-horizon geometry of an extreme black hole.Comment: 21 pages (v2:Minor corrections, accepted by CQG.

    On the structure of the ergosurface of Pomeransky-Senkov black rings

    Full text link
    We study the properties of the ergosurface of the Pomeransky-Senkov black rings, and show that it splits into an "inner"' and an "outer" region. As for the singular set, the topology of the "outer ergosurface" depends upon the value of parameters.Comment: 14 pages, 1 figur

    Generalization of the Geroch-Held-Penrose formalism to higher dimensions

    Full text link
    Geroch, Held and Penrose invented a formalism for studying spacetimes admitting one or two preferred null directions. This approach is very useful for studying algebraically special spacetimes and their perturbations. In the present paper, the formalism is generalized to higher-dimensional spacetimes. This new formalism leads to equations that are considerably simpler than those of the higher-dimensional Newman-Penrose formalism employed previously. The dynamics of p-form test fields is analyzed using the new formalism and some results concerning algebraically special p-form fields are proved.Comment: 24 page

    Ultrastructural studies of microconidium formation

    Get PDF
    Ultrastructural studies of microconidium formatio

    MCNPX Cosmic Ray Shielding Calculations with the NORMAN Phantom Model

    Get PDF
    The United States is planning manned lunar and interplanetary missions in the coming years. Shielding from cosmic rays is a critical aspect of manned spaceflight. These ventures will present exposure issues involving the interplanetary Galactic Cosmic Ray (GCR) environment. GCRs are comprised primarily of protons (approx.84.5%) and alpha-particles (approx.14.7%), while the remainder is comprised of massive, highly energetic nuclei. The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has commissioned a joint study with Los Alamos National Laboratory (LANL) to investigate the interaction of the GCR environment with humans using high-fidelity, state-of-the-art computer simulations. The simulations involve shielding and dose calculations in order to assess radiation effects in various organs. The simulations are being conducted using high-resolution voxel-phantom models and the MCNPX[1] Monte Carlo radiation-transport code. Recent advances in MCNPX physics packages now enable simulated transport over 2200 types of ions of widely varying energies in large, intricate geometries. We report here initial results obtained using a GCR spectrum and a NORMAN[3] phantom

    Type III and N Einstein spacetimes in higher dimensions: general properties

    Full text link
    The Sachs equations governing the evolution of the optical matrix of geodetic WANDs (Weyl aligned null directions) are explicitly solved in n-dimensions in several cases which are of interest in potential applications. This is then used to study Einstein spacetimes of type III and N in the higher dimensional Newman-Penrose formalism, considering both Kundt and expanding (possibly twisting) solutions. In particular, the general dependence of the metric and of the Weyl tensor on an affine parameter r is obtained in a closed form. This allows us to characterize the peeling behaviour of the Weyl "physical" components for large values of r, and thus to discuss, e.g., how the presence of twist affects polarization modes, and qualitative differences between four and higher dimensions. Further, the r-dependence of certain non-zero scalar curvature invariants of expanding spacetimes is used to demonstrate that curvature singularities may generically be present. As an illustration, several explicit type N/III spacetimes that solve Einstein's vacuum equations (with a possible cosmological constant) in higher dimensions are finally presented.Comment: 19 page

    An anisotropic distribution of spin vectors in asteroid families

    Full text link
    Current amount of ~500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes. The remaining models are adopted from the DAMIT database or the literature. We revise the preliminary family membership identification by the HCM method according to several additional criteria - taxonomic type, color, albedo, maximum Yarkovsky semi-major axis drift and the consistency with the size-frequency distribution of each family, and consequently we remove interlopers. We then present the spin-vector distributions for eight asteroidal families. We use a combined orbital- and spin-evolution model to explain the observed spin-vector properties of objects among collisional families. In general, we observe for studied families similar trends in the (a_p, \beta) space: (i) larger asteroids are situated in the proximity of the center of the family; (ii) asteroids with \beta>0{\deg} are usually found to the right from the family center; (iii) on the other hand, asteroids with \beta<0{\deg} to the left from the center; (iv) majority of asteroids have large pole-ecliptic latitudes (|\beta|\gtrsim 30{\deg}); and finally (v) some families have a statistically significant excess of asteroids with \beta>0{\deg} or \beta<0{\deg}. Our numerical simulation of the long-term evolution of a collisional family is capable of reproducing well the observed spin-vector properties. Using this simulation, we also independently constrain the age of families Flora (1.0\pm0.5 Gyr) and Koronis (2.5-4 Gyr).Comment: Accepted for publication in A&A (September 16, 2013

    Semi-automatic segmentation of subcutaneous tumours from micro-computed tomography images

    Get PDF
    Cataloged from PDF version of article.This paper outlines the first attempt to segment the boundary of preclinical subcutaneous tumours, which are frequently used in cancer research, from micro-computed tomography (microCT) image data. MicroCT images provide low tissue contrast, and the tumour-to-muscle interface is hard to determine, however faint features exist which enable the boundary to be located. These are used as the basis of our semi-automatic segmentation algorithm. Local phase feature detection is used to highlight the faint boundary features, and a level set-based active contour is used to generate smooth contours that fit the sparse boundary features. The algorithm is validated against manually drawn contours and micro-positron emission tomography (microPET) images. When compared against manual expert segmentations, it was consistently able to segment at least 70% of the tumour region (n = 39) in both easy and difficult cases, and over a broad range of tumour volumes. When compared against tumour microPET data, it was able to capture over 80% of the functional microPET volume. Based on these results, we demonstrate the feasibility of subcutaneous tumour segmentation from microCT image data without the assistance of exogenous contrast agents. Our approach is a proof-of-concept that can be used as the foundation for further research, and to facilitate this, the code is open-source and available from www.setuvo.com. © 2013 Institute of Physics and Engineering in Medicine

    Ultraspinning instability: the missing link

    Full text link
    We study linearized perturbations of Myers-Perry black holes in d=7, with two of the three angular momenta set to be equal, and show that instabilities always appear before extremality. Analogous results are expected for all higher odd d. We determine numerically the stationary perturbations that mark the onset of instability for the modes that preserve the isometries of the background. The onset is continuously connected between the previously studied sectors of solutions with a single angular momentum and solutions with all angular momenta equal. This shows that the near-extremality instabilities are of the same nature as the ultraspinning instability of d>5 singly-spinning solutions, for which the angular momentum is unbounded. Our results raise the question of whether there are any extremal Myers-Perry black holes which are stable in d>5.Comment: 19 pages. 1 figur

    Spinor classification of the Weyl tensor in five dimensions

    Full text link
    We investigate the spinor classification of the Weyl tensor in five dimensions due to De Smet. We show that a previously overlooked reality condition reduces the number of possible types in the classification. We classify all vacuum solutions belonging to the most special algebraic type. The connection between this spinor and the tensor classification due to Coley, Milson, Pravda and Pravdov\'a is investigated and the relation between most of the types in each of the classifications is given. We show that the black ring is algebraically general in the spinor classification.Comment: 40 page
    corecore