28 research outputs found

    Novel effect of nefopam preventing cGMP increase, oxygen radical formation and neuronal death induced by veratridine

    Get PDF
    Nefopam hydrochloride is a potent analgesic compound that possesses a profile distinct from that of opiods or anti-inflammatory drugs. Previous evidence suggested a central action of nefopam but the detailed mechanisms remain unclear. Here we have used cultured cerebellar neurons to test the hypothesis that nefopam may modulate voltage sensitive sodium channel (VSSC) activity. Nefopam (100 microM) effectively prevented NMDA receptor-mediated early appearance (30 min) of toxicity signs induced by the VSSC activator veratridine. Delayed neurotoxicity by veratridine occurring independently from NMDA receptor activation, was also prevented by nefopam. In contrast, excitotoxicity following direct exposure of neurons to glutamate was not affected. Neuroprotection by nefopam was dose-dependent. 50% protection was obtained at 57 microM while full neuroprotection was achieved at 75 microM nefopam. Veratridine-induced sodium influx was completely abolished in nefopam-treated neurons. Intracellular cGMP and oxygen radical formation following VSSC stimulation by veratridine were also effectively prevented by nefopam. Our data are consistent with an inhibitory action of nefopam on VSSC and suggest that nefopam may modulate the release of endogenous glutamate following activation of these channels. This novel action of nefopam may be of great interest for the treatment of neurodegenerative disorders involving excessive glutamate release and neurotransmission

    Terfenadine prevents NMDA receptor-dependent and -independent toxicity following sodium channel activation

    No full text
    Exposure of cultured cerebellar neurons to terfenadine prevented the N- methyl-D-aspartate (NMDA) receptor-mediated early appearance (30 min) of toxicity signs induced by the voltage sensitive sodium channel (VSSC) activator veratridine. Delayed neurotoxicity by veratridine (24 h) occurring independently from NMDA receptor activation was also prevented by terfenadine. Terfenadine did not protect from excitotoxicity following direct exposure of neurons to glutamate. Our results suggest that terfenadine may modulate endogenous glutamate release following activation of VSSCs

    NMDA receptor dependent and independent components of veratridine toxicity in cultured cerebellar neurons are prevented by nanomolar concentrations of terfenadine

    No full text
    Exposure of cultured neurons to nanomolar concentrations of terfenadine prevented the NMDA receptor-mediated early appearance (30min.) of toxicity signs induced by the voltage sensitive sodium channel activator veratridine. Terfenadine also provided an histamine-insensitive protection against delayed neurotoxicity by veratridine (24h), occurring independently of NMDA receptor activation, while not protecting from excitotoxicity following direct exposure of neurons to glutamate. Terfenadine reduced tetrodotoxin-sensitive inward currents, and reduced intracellular cGMP formation following veratridine exposure. Our data suggest that nanomolar concentrations of TEF may reduce excitatory aminoacid release following neuronal depolarization via a presynaptic mechanism involving voltage sensitive sodium channels, and therefore may be considered as a prototype for therapeutic drugs in the treatment of diseases that involve excitatory aminoacid neurotransmission.Exposure of cultured neurons to nanomolar concentrations of terfenadine prevented the NMDA receptor-mediated early appearance (30 min.) of toxicity signs induced by the voltage sensitive sodium channel activator veratridine. Terfenadine also provided an histamine-insensitive protection against delayed neurotoxicity by veratridine (24h), occurring independently of NMDA receptor activation, while not protecting from excitotoxicity following direct exposure of neurons to glutamate. Terfenadine reduced tetrodotoxin-sensitive inward currents, and reduced intracellular cGMP formation following veratridine exposure. Our data suggest that nanomolar concentrations of TEF may reduce excitatory aminoacid release following neuronal depolarization via a presynaptic mechanism involving voltage sensitive sodium channels, and therefore may be considered as a prototype for therapeutic drugs in the treatment of diseases that involve excitatory aminoacid neurotransmission

    Ontogeny of kainate receptor gene expression in the developing rat midbrain and striatum

    No full text
    Kainate (KA) receptors are a family of ionotropic glutamate receptors, which mediate the excitatory synaptic transmission in various areas of the mammalian CNS. We have studied the expression pattern of the genes encoding for KA receptor subunits (Glur5-1, Glur5-2, Glur6, Glur7, KA1 and KA2) in rat prenatal (E), postnatal and adult ventral mesencephalon (MES) and striatum (STR) and in fetal midbrain primary cultures. Each receptor subunit shows a unique area- and temporal-expression pattern. In MES the onset of both Glur5 subunits is delayed when compared to the other subunits. In addition, most of the transcripts for KA subunits gradually increase during embryonic development and show a slight decrease during the first postnatal week. Differently, Glur6 and KA2 mRNAs show a sharp increase at E14.5 and decrease thereafter, reaching the lowest levels during late embryonic and postnatal development. In the STR, the gene expression of all KA subunit mRNAs is higher during embryonic development than after birth, except KA1 transcripts, that show a peak at P5. In embryonic MES primary cultures, Glur5-2, Glur6 and KA2 mRNAs are higher at the beginning of the culture when compared to older cultures, while the other subunit mRNAs do not show significant variation throughout the days in vitro. Thus, all the KA receptor subunit transcripts appear independently regulated during MES and STR development, probably contributing to the establishment of the fine tuning of the excitatory circuits reciprocally established between these CNS areas. Š 2002 Elsevier Science B.V. All rights reserved

    Cartilage Reshaping

    No full text
    In this chapter, we introduce the working theory of cartilage reshaping and highlight landmark papers in the development and refinement of this technique. We discuss the tissue and mechanical properties of cartilage and define how optical techniques may be utilized to manipulate these properties. The goal of cartilage reshaping is to ultimately reduce the need for more invasive traditional approaches with scalpel and suture, in favor of much less invasive techniques. Therefore, we discuss the challenges associated with its development and delineate its translation toward clinical applications
    corecore