851 research outputs found
A detailed kinetic model for biogas steam reforming on Ni and catalyst deactivation due to sulfur poisoning
This paper deals with the development and validation of a detailed kinetic model for steam reforming of biogas with and without H2S. The model has 68 reactions among 8 gasphase species and 18 surface adsorbed species including the catalytic surface. The activation energies for various reactions are calculated based on unity bond index-quadratic exponential potential (UBI-QEP) method. The whole mechanism is made thermodynamically consistent by using a previously published algorithm. Sensitivity analysis is carried out to understand the influence of reaction parameters on surface coverage of sulfur. The parameters describing sticking and desorption reactions of H2S are the most sensitive ones for the formation of adsorbed sulfur. The mechanism is validated in the temperature range of 873-1200 K for biogas free from H 2S and 973-1173 K for biogas containing 20-108 ppm H2S. The model predicts that during the initial stages of poisoning sulfur coverages are high near the reactor inlet; however, as the reaction proceeds further sulfur coverages increase towards the reactor exit. In the absence of sulfur, CO and elemental hydrogen are the dominant surface adsorbed species. High temperature operation can significantly mitigate sulfur adsorption and hence the saturation sulfur coverages are lower compared to low temperature operation. Low temperature operation can lead to full deactivation of the catalyst. The model predicts saturation coverages that are comparable to experimental observatio
Proton acceleration by irradiation of isolated spheres with an intense laser pulse
We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2-3 x 10(20) W cm(-2). With a laser focal spot size of 10 mu m full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 mu m. Maximum proton energies of similar to 25 MeV are achieved for targets matching the focal spot size of 10 mu m in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused by Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. They make use of well-defined targets and point out pathways for future applications and experiments.DFG via the Cluster of Excellence Munich-Centre for Advanced Photonics (MAP) Transregio SFB TR18NNSA DE-NA0002008Super-MUC pr48meIvo CermakCGC Instruments in design and realization of the Paul trap systemIMPRS-APSLMUexcellent Junior Research FundDAAD|ToIFEEuropean Union's Horizon research and innovation programme 633053Physic
Bloch-Like Quantum Multiple Reflections of Atoms
We show that under certain circumstances an atom can follow an oscillatory
motion in a periodic laser profile with a Gaussian envelope. These oscillations
can be well explained by using a model of energetically forbidden spatial
regions. The similarities and differences with Bloch oscillations are
discussed. We demonstrate that the effect exists not only for repulsive but
also for attractive potentials, i.e. quantum multiple reflections are also
possible.Comment: LaTeX, 7 pages, 7 figure
Sign-reversal of drag in bilayer systems with in-plane periodic potential modulation
We develop a theory for describing frictional drag in bilayer systems with
in-plane periodic potential modulations, and use it to investigate the drag
between bilayer systems in which one of the layers is modulated in one
direction. At low temperatures, as the density of carriers in the modulated
layer is changed, we show that the transresistivity component in the direction
of modulation can change its sign. We also give a physical explanation for this
behavior.Comment: 4 pages, 4 figure
Competition and Selection Among Conventions
In many domains, a latent competition among different conventions determines
which one will come to dominate. One sees such effects in the success of
community jargon, of competing frames in political rhetoric, or of terminology
in technical contexts. These effects have become widespread in the online
domain, where the data offers the potential to study competition among
conventions at a fine-grained level.
In analyzing the dynamics of conventions over time, however, even with
detailed on-line data, one encounters two significant challenges. First, as
conventions evolve, the underlying substance of their meaning tends to change
as well; and such substantive changes confound investigations of social
effects. Second, the selection of a convention takes place through the complex
interactions of individuals within a community, and contention between the
users of competing conventions plays a key role in the convention's evolution.
Any analysis must take place in the presence of these two issues.
In this work we study a setting in which we can cleanly track the competition
among conventions. Our analysis is based on the spread of low-level authoring
conventions in the eprint arXiv over 24 years: by tracking the spread of macros
and other author-defined conventions, we are able to study conventions that
vary even as the underlying meaning remains constant. We find that the
interaction among co-authors over time plays a crucial role in the selection of
them; the distinction between more and less experienced members of the
community, and the distinction between conventions with visible versus
invisible effects, are both central to the underlying processes. Through our
analysis we make predictions at the population level about the ultimate success
of different synonymous conventions over time--and at the individual level
about the outcome of "fights" between people over convention choices.Comment: To appear in Proceedings of WWW 2017, data at
https://github.com/CornellNLP/Macro
The critical behavior of frustrated spin models with noncollinear order
We study the critical behavior of frustrated spin models with noncollinear
order, including stacked triangular antiferromagnets and helimagnets. For this
purpose we compute the field-theoretic expansions at fixed dimension to six
loops and determine their large-order behavior. For the physically relevant
cases of two and three components, we show the existence of a new stable fixed
point that corresponds to the conjectured chiral universality class. This
contradicts previous three-loop field-theoretical results but is in agreement
with experiments.Comment: 4 pages, RevTe
Field-Induced Two-Step Phase Transitions in the Singlet Ground State Triangular Antiferromagnet CsFeBr
The ground state of the stacked triangular antiferromagnet CsFeBr is a
spin singlet due to the large single ion anisotropy . The
field-induced magnetic ordering in this compound was investigated by the
magnetic susceptibility, the magnetization process and specific heat
measurements for an external field parallel to the -axis. Unexpectedly, two
phase transitions were observed in the magnetic field higher than 3 T. The
phase diagram for temperature versus magnetic field was obtained. The mechanism
leading to the successive phase transitions is discussed.Comment: 8 pages, 9 figures, 10 eps files, jpsj styl
Numerical Modeling of Evanescent-Wave Atom Optics
We numerically solve the time-dependent Schrodinger equation for a two-level atom interacting with an evanescent light field. The atom may be reflected or diffracted. Using the experimental parameter values we quantitatively model the evanescent field dopplerons (velocity-tuned resonances) observed by Stenlake et al. [Phys. Rev. A 49, 16 (1994)]. Besides successfully modeling the experiment, our approach provides complementary insights to the usual solution of the time-independent Schrodinger equation. We neglect spontaneous emission
Magnetotransport in Two-Dimensional Electron Systems with Spin-Orbit Interaction
We present magnetotransport calculations for homogeneous two-dimensional
electron systems including the Rashba spin-orbit interaction, which mixes the
spin-eigenstates and leads to a modified fan-chart with crossing Landau levels.
The quantum mechanical Kubo formula is evaluated by taking into account
spin-conserving scatterers in an extension of the self-consistent Born
approximation that considers the spin degree of freedom. The calculated
conductivity exhibits besides the well-known beating in the Shubnikov-de Haas
(SdH) oscillations a modulation which is due to a suppression of scattering
away from the crossing points of Landau levels and does not show up in the
density of states. This modulation, surviving even at elevated temperatures
when the SdH oscillations are damped out, could serve to identify spin-orbit
coupling in magnetotransport experiments. Our magnetotransport calculations are
extended also to lateral superlattices and predictions are made with respect to
1/B periodic oscillations in dependence on carrier density and strength of the
spin-orbit coupling.Comment: 8 pages including 8 figures; submitted to PR
- …
