124 research outputs found
Creating topological interfaces and detecting chiral edge modes in a 2D optical lattice
We propose and analyze a general scheme to create chiral topological edge
modes within the bulk of two-dimensional engineered quantum systems. Our method
is based on the implementation of topological interfaces, designed within the
bulk of the system, where topologically-protected edge modes localize and
freely propagate in a unidirectional manner. This scheme is illustrated through
an optical-lattice realization of the Haldane model for cold atoms, where an
additional spatially-varying lattice potential induces distinct topological
phases in separated regions of space. We present two realistic experimental
configurations, which lead to linear and radial-symmetric topological
interfaces, which both allows one to significantly reduce the effects of
external confinement on topological edge properties. Furthermore, the
versatility of our method opens the possibility of tuning the position, the
localization length and the chirality of the edge modes, through simple
adjustments of the lattice potentials. In order to demonstrate the unique
detectability offered by engineered interfaces, we numerically investigate the
time-evolution of wave packets, indicating how topological transport
unambiguously manifests itself within the lattice. Finally, we analyze the
effects of disorder on the dynamics of chiral and non-chiral states present in
the system. Interestingly, engineered disorder is shown to provide a powerful
tool for the detection of topological edge modes in cold-atom setups.Comment: 18 pages, 21 figure
Absorption imaging of a quasi 2D gas: a multiple scattering analysis
Absorption imaging with quasi-resonant laser light is a commonly used
technique to probe ultra-cold atomic gases in various geometries. Here we
investigate some non-trivial aspects of this method when it is applied to in
situ diagnosis of a quasi two-dimensional gas. Using Monte Carlo simulations we
study the modification of the absorption cross-section of a photon when it
undergoes multiple scattering in the gas. We determine the variations of the
optical density with various parameters, such as the detuning of the light from
the atomic resonance and the thickness of the gas. We compare our results to
the known three-dimensional result (Beer-Lambert law) and outline the specific
features of the two-dimensional case.Comment: 22 pages, 5 figure
Superfluid behaviour of a two-dimensional Bose gas
Two-dimensional (2D) systems play a special role in many-body physics.
Because of thermal fluctuations, they cannot undergo a conventional phase
transition associated to the breaking of a continuous symmetry. Nevertheless
they may exhibit a phase transition to a state with quasi-long range order via
the Berezinskii-Kosterlitz-Thouless (BKT) mechanism. A paradigm example is the
2D Bose fluid, such as a liquid helium film, which cannot Bose-condense at
non-zero temperature although it becomes superfluid above a critical phase
space density. Ultracold atomic gases constitute versatile systems in which the
2D quasi-long range coherence and the microscopic nature of the BKT transition
were recently explored. However, a direct observation of superfluidity in terms
of frictionless flow is still missing for these systems. Here we probe the
superfluidity of a 2D trapped Bose gas with a moving obstacle formed by a
micron-sized laser beam. We find a dramatic variation of the response of the
fluid, depending on its degree of degeneracy at the obstacle location. In
particular we do not observe any significant heating in the central, highly
degenerate region if the velocity of the obstacle is below a critical value.Comment: 5 pages, 3 figure
Hysteresis in a quantized, superfluid atomtronic circuit
Atomtronics is an emerging interdisciplinary field that seeks new
functionality by creating devices and circuits where ultra-cold atoms, often
superfluids, play a role analogous to the electrons in electronics. Hysteresis
is widely used in electronic circuits, e.g., it is routinely observed in
superconducting circuits and is essential in rf-superconducting quantum
interference devices [SQUIDs]. Furthermore, hysteresis is as fundamental to
superfluidity (and superconductivity) as quantized persistent currents,
critical velocity, and Josephson effects. Nevertheless, in spite of multiple
theoretical predictions, hysteresis has not been previously observed in any
superfluid, atomic-gas Bose-Einstein condensate (BEC). Here we demonstrate
hysteresis in a quantized atomtronic circuit: a ring of superfluid BEC
obstructed by a rotating weak link. We directly detect hysteresis between
quantized circulation states, in contrast to superfluid liquid helium
experiments that observed hysteresis directly in systems where the quantization
of flow could not be observed and indirectly in systems that showed quantized
flow. Our techniques allow us to tune the size of the hysteresis loop and to
consider the fundamental excitations that accompany hysteresis. The results
suggest that the relevant excitations involved in hysteresis are vortices and
indicate that dissipation plays an important role in the dynamics. Controlled
hysteresis in atomtronic circuits may prove to be a crucial feature for the
development of practical devices, just as it has in electronic circuits like
memory, digital noise filters (e.g., Schmitt triggers), and magnetometers
(e.g., SQUIDs).Comment: 20 pages, 4 figure
Quantum transport in ultracold atoms
Ultracold atoms confined by engineered magnetic or optical potentials are
ideal systems for studying phenomena otherwise difficult to realize or probe in
the solid state because their atomic interaction strength, number of species,
density, and geometry can be independently controlled. This review focuses on
quantum transport phenomena in atomic gases that mirror and oftentimes either
better elucidate or show fundamental differences with those observed in
mesoscopic and nanoscopic systems. We discuss significant progress in
performing transport experiments in atomic gases, contrast similarities and
differences between transport in cold atoms and in condensed matter systems,
and survey inspiring theoretical predictions that are difficult to verify in
conventional setups. These results further demonstrate the versatility offered
by atomic systems in the study of nonequilibrium phenomena and their promise
for novel applications.Comment: 24 pages, 7 figures. A revie
Effect of chloroquine on gene expression of Plasmodium yoelii nigeriensis during its sporogonic development in the mosquito vector
<p>Abstract</p> <p>Background</p> <p>The anti-malarial chloroquine can modulate the outcome of infection during the <it>Plasmodium </it>sporogonic development, interfering with <it>Plasmodium </it>gene expression and subsequently, with transmission. The present study sets to identify <it>Plasmodium </it>genes that might be regulated by chloroquine in the mosquito vector.</p> <p>Methods</p> <p>Differential display RT-PCR (DDRT-PCR) was used to identify genes expressed during the sporogonic cycle that are regulated by exposure to chloroquine. <it>Anopheles stephensi </it>mosquitoes were fed on <it>Plasmodium yoelii nigeriensis</it>-infected mice. Three days post-infection, mosquitoes were fed a non-infectious blood meal from mice treated orally with 50 mg/kg chloroquine. Two differentially expressed <it>Plasmodium </it>transcripts (Pyn_chl091 and Pyn_chl055) were further characterized by DNA sequencing and real-time PCR analysis.</p> <p>Results</p> <p>Both transcripts were represented in <it>Plasmodium </it>EST databases, but displayed no homology with any known genes. Pyn_chl091 was upregulated by day 18 post infection when the mosquito had a second blood meal. However, when the effect of chloroquine on that transcript was investigated during the erythrocytic cycle, no significant differences were observed. Although slightly upregulated by chloroquine exposure the expression of Pyn_chl055 was more affected by development, increasing towards the end of the sporogonic cycle. Transcript abundance of Pyn_chl055 was reduced when erythrocytic stages were treated with chloroquine.</p> <p>Conclusion</p> <p>Chloroquine increased parasite load in mosquito salivary glands and interferes with the expression of at least two <it>Plasmodium </it>genes. The transcripts identified contain putative signal peptides and transmembrane domains suggesting that these proteins, due to their location, are targets of chloroquine (not as an antimalarial) probably through cell trafficking and recycling.</p
Chloroquine Mediated Modulation of Anopheles gambiae Gene Expression
Plasmodium development in the mosquito is crucial for malaria transmission and depends on the parasite's interaction with a variety of cell types and specific mosquito factors that have both positive and negative effects on infection. Whereas the defensive response of the mosquito contributes to a decrease in parasite numbers during these stages, some components of the blood meal are known to favor infection, potentiating the risk of increased transmission. The presence of the antimalarial drug chloroquine in the mosquito's blood meal has been associated with an increase in Plasmodium infectivity for the mosquito, which is possibly caused by chloroquine interfering with the capacity of the mosquito to defend against the infection.In this study, we report a detailed survey of the Anopheles gambiae genes that are differentially regulated by the presence of chloroquine in the blood meal, using an A. gambiae cDNA microarray. The effect of chloroquine on transcript abundance was evaluated separately for non-infected and Plasmodium berghei-infected mosquitoes. Chloroquine was found to affect the abundance of transcripts that encode proteins involved in a variety of processes, including immunity, apoptosis, cytoskeleton and the response to oxidative stress. This pattern of differential gene expression may explain the weakened mosquito defense response which accounts for the increased infectivity observed in chloroquine-treated mosquitoes.The results of the present study suggest that chloroquine can interfere with several putative mosquito mechanisms of defense against Plasmodium at the level of gene expression and highlight the need for a better understanding of the impacts of antimalarial agents on parasite transmission
- …