1,500 research outputs found

    Languages of the Finisterre Range - New Guinea

    Get PDF

    ac Losses in a Finite Z Stack Using an Anisotropic Homogeneous-Medium Approximation

    Full text link
    A finite stack of thin superconducting tapes, all carrying a fixed current I, can be approximated by an anisotropic superconducting bar with critical current density Jc=Ic/2aD, where Ic is the critical current of each tape, 2a is the tape width, and D is the tape-to-tape periodicity. The current density J must obey the constraint \int J dx = I/D, where the tapes lie parallel to the x axis and are stacked along the z axis. We suppose that Jc is independent of field (Bean approximation) and look for a solution to the critical state for arbitrary height 2b of the stack. For c<|x|<a we have J=Jc, and for |x|<c the critical state requires that Bz=0. We show that this implies \partial J/\partial x=0 in the central region. Setting c as a constant (independent of z) results in field profiles remarkably close to the desired one (Bz=0 for |x|<c) as long as the aspect ratio b/a is not too small. We evaluate various criteria for choosing c, and we show that the calculated hysteretic losses depend only weakly on how c is chosen. We argue that for small D/a the anisotropic homogeneous-medium approximation gives a reasonably accurate estimate of the ac losses in a finite Z stack. The results for a Z stack can be used to calculate the transport losses in a pancake coil wound with superconducting tape.Comment: 21 pages, 17 figures, accepted by Supercond. Sci. Techno

    An Economic Analysis of Carbon Sequestration for Wheat and Grain Sorghum Production in Kansas

    Get PDF
    This study examined the economic potential with and without carbon credit payments of two crop and tillage systems in South Central Kansas that could reduce carbon dioxide emissions and sequester carbon in the soil. Experiment station cropping practices, yield data, and soil carbon data for continuously cropped wheat and grain sorghum produced with conventional tillage and no-tillage from1986 to 1995 were used to determine soil carbon changes and to develop enterprise budgets to determine expected net returns for a typical dryland farm in South Central Kansas. No-till had lower net returns because of lower yields and higher overall costs. Both crops produced under no-till had higher annual soil C gains than under conventional tillage. Carbon credit payments may be critical to induce farm managers to use cropping practices, such as no-till, that sequester soil carbon. The carbon credit payments needed will be highly dependent on cropping system production costs, especially herbicide costs, which substitute for tillage as a means of weed control. The C values estimated in this study that would provide an incentive to adopt no-tillage range from 0to0 to 95.991ton/year, depending upon the assumption about herbicide costs. In addition, if producers were compensated for other environmental benefits associated with no-till, carbon credits could be reduced.carbon credit value, carbon sequestration, grain sorghum, no-tillage, wheat, Crop Production/Industries,

    Modeling Accuracy and Variability of Motor Timing in Treated and Untreated Parkinson’s Disease and Healthy Controls

    Get PDF
    Parkinson’s disease (PD) is characterized by difficulty with the timing of movements. Data collected using the synchronization–continuation paradigm, an established motor timing paradigm, have produced varying results but with most studies finding impairment. Some of this inconsistency comes from variation in the medication state tested, in the inter-stimulus intervals (ISI) selected, and in changeable focus on either the synchronization (tapping in time with a tone) or continuation (maintaining the rhythm in the absence of the tone) phase. We sought to re-visit the paradigm by testing across four groups of participants: healthy controls, medication naïve de novo PD patients, and treated PD patients both “on” and “off” dopaminergic medication. Four finger tapping intervals (ISI) were used: 250, 500, 1000, and 2000 ms. Categorical predictors (group, ISI, and phase) were used to predict accuracy and variability using a linear mixed model. Accuracy was defined as the relative error of a tap, and variability as the deviation of the participant’s tap from group predicted relative error. Our primary finding is that the treated PD group (PD patients “on” and “off” dopaminergic therapy) showed a significantly different pattern of accuracy compared to the de novo group and the healthy controls at the 250-ms interval. At this interval, the treated PD patients performed “ahead” of the beat whilst the other groups performed “behind” the beat. We speculate that this “hastening” relates to the clinical phenomenon of motor festination. Across all groups, variability was smallest for both phases at the 500-ms interval, suggesting an innate preference for finger tapping within this range. Tapping variability for the two phases became increasingly divergent at the longer intervals, with worse performance in the continuation phase. The data suggest that patients with PD can be best discriminated from healthy controls on measures of motor timing accuracy, rather than variability

    DERIVED CARBON CREDIT VALUES FOR CARBON SEQUESTRATION: DO CO2 EMISSIONS FROM PRODUCTION INPUTS MATTER ?

    Get PDF
    An economic analysis was conducted involving wheat and grain sorghum production systems that affect carbon dioxide emissions and sequester soil carbon. Parameters examined were expected net returns, changes in net carbon sequestered and the value of carbon credits necessary to equate net returns from systems that sequester more carbon to those that sequester less with and without adjustments for CO2 emissions from production inputs. Evaluations were based on experiment station cropping practices, yield, and soil carbon data for continuously cropped and rotated wheat and grain sorghum produced with conventional and no-tillage. No-till had lower net returns because of lower yields and higher overall costs. Both crops produced under no-till had higher annual soil C gains than under conventional tillage. However, no-till systems had higher total atmospheric emissions of C from production inputs. The differences were relatively small. The C values estimated in this study that would equate net returns of no-tillage to conventional tillage range from 7.82to7.82 to 58.69/ton/yr when C emissions from production inputs were subtracted from soil carbon sequestered and 7.79to7.79 to 54.99/ton/yr when atmospheric emissions were not considered.Environmental Economics and Policy,

    Preliminary analysis of Skylab RADSCAT results over the ocean

    Get PDF
    Preliminary observations at 13.9 GHz of the radar backscatter and microwave emission from the sea were analyzed using data obtained by the radiometer scatterometer on Skylab. Results indicate approximately a square-law relationship between differential scattering coefficient and windspeed at angles of 40 deg to 50 deg, after correction for directional effect, over a range from about 4 up to about 25 meters/sec. The brightness temperature response was also observed, and considerable success was achieved in correcting it for atmospheric attenuation and emission. Measurements were made in June, 1973, over Hurricane Ava off the west coast of Mexico and over relatively calm conditions in the Gulf of Mexico and Caribbean Sea
    corecore