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Parkinson’s disease (PD) is characterized by difficulty with the timing of movements. Data
collected using the synchronization–continuation paradigm, an established motor timing
paradigm, have produced varying results but with most studies finding impairment. Some
of this inconsistency comes from variation in the medication state tested, in the inter-
stimulus intervals (ISI) selected, and in changeable focus on either the synchronization
(tapping in time with a tone) or continuation (maintaining the rhythm in the absence of the
tone) phase. We sought to re-visit the paradigm by testing across four groups of partic-
ipants: healthy controls, medication naïve de novo PD patients, and treated PD patients
both “on” and “off” dopaminergic medication. Four finger tapping intervals (ISI) were used:
250, 500, 1000, and 2000 ms. Categorical predictors (group, ISI, and phase) were used to
predict accuracy and variability using a linear mixed model. Accuracy was defined as the
relative error of a tap, and variability as the deviation of the participant’s tap from group
predicted relative error. Our primary finding is that the treated PD group (PD patients “on”
and “off” dopaminergic therapy) showed a significantly different pattern of accuracy com-
pared to the de novo group and the healthy controls at the 250-ms interval. At this interval,
the treated PD patients performed “ahead” of the beat whilst the other groups performed
“behind” the beat. We speculate that this “hastening” relates to the clinical phenomenon
of motor festination. Across all groups, variability was smallest for both phases at the 500-
ms interval, suggesting an innate preference for finger tapping within this range. Tapping
variability for the two phases became increasingly divergent at the longer intervals, with
worse performance in the continuation phase.The data suggest that patients with PD can
be best discriminated from healthy controls on measures of motor timing accuracy, rather
than variability.

Keywords: motor timing, Parkinson’s disease, temporal processing, synchronization, continuation, dopamine,

linear mixed model

INTRODUCTION
The ability to accurately time movements is a critical component
of motor function and the study of motor timing has provided
insight into the functions of a hypothetical “internal clock” (see
Jones and Jahanshahi, 2009 for a review). Motor timing has been
most commonly measured using an elegant and influential para-
digm known as the synchronization–continuation task (e.g., Wing
and Kristofferson, 1973a,b). The task has proved a useful paradigm
for studying both normal and pathological patterns of motor tim-
ing. The participant first synchronizes their tapping rate (usually
the index finger of their dominant hand) with an externally pro-
vided cue (typically an auditory tone). The pacing stimulus is
presented at a regular interval that generally falls within the period
of several hundred milliseconds (ms) to a couple of seconds. After
a criterion number of taps the pacing stimulus is stopped and the

participant has to maintain the rhythm unaided; this is the con-
tinuation phase. Thus, the task measures the ability to entrain a
motor response to a timed cue and to then maintain the learnt
rhythm unaided.

Analysis of the task has focused on the quantification of the
accuracy and variability of tapping. Both measure important char-
acteristics of performance, with accuracy reflecting the closeness
of a response to its target and variability reflecting how spread
repeated responses are from the target. Investigation of accuracy
has been typically explored using mean effects, either using the
mean inter-response interval or mean absolute error (e.g., O’Boyle
et al., 1996; Pope et al., 2006; Merchant et al., 2008a). Variabil-
ity has been assessed using common statistical constructs such as
the SD (e.g., Merchant et al., 2008a) or coefficient of variation
(e.g., Pope et al., 2006). However, the exploration of variability has
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been dominated by an influential model (Wing and Kristofferson,
1973a,b) that seeks to decompose the variability on the continua-
tion phase of the task into that attributable to “clock” processes or
alternatively to motor execution. However, the Wing and Kristof-
ferson model is not without caveats. First, the model assumes that
the hypothetical clock and motor processes are independent of
one another. Second, it does not allow for the drift in the length
of the produced taps, a phenomenon that is commonly observed
in human tapping data (e.g., Collier and Ogden, 2001; Madison,
2001). Additionally, the Wing and Kristofferson model is focused
on variability during the continuation phase. This ignores the use-
ful information that can be gained from exploring performance
on the paced section of the paradigm. For example, impaired per-
formance on the continuation phase could be due to an inability
to reproduce a learnt rhythm, or it could be a reflection of the
inability to master the rhythm during the synchronization phase.

The task has been readily adopted to assess motor timing in
Parkinson’s disease (PD). PD is a complex neurodegenerative dis-
order characterized by impairments of motor function resulting
in the clinical symptoms of bradykinesia, rigidity, tremor, and pos-
tural instability. The cardinal motor symptoms emerge following
dopaminergic cell loss in the substantia nigra pars compacta. As
such, research establishing that people with PD are impaired at the
synchronization–continuation task has been pivotal to the hypoth-
esis that the basal ganglia are essential to temporal processing (e.g.,
Pastor et al., 1992; Freeman et al., 1993; Harrington et al., 1998;
although see Ivry and Keele, 1989; Yahalom et al., 2004; Spencer
and Ivry, 2005). Our recent work has shown that the neural cor-
relates of motor tapping show a distinct pattern for individuals
with PD (Jahanshahi et al., 2010). Specifically, patients with PD do
not show the typical pattern of activation of striato-frontal sites
seen in healthy controls and instead show greater activation of the
cerebellum.

Although the majority of studies report atypical performance
on this task in PD, the pattern of dysfunction varies across studies.
Analysis of accuracy has suggested faster (O’Boyle et al., 1996),
slower (Pastor et al., 1992), and unimpaired (Yahalom et al., 2004;
Spencer and Ivry, 2005) tapping in PD. Variability data are more
consistent, with studies tending to find it elevated (e.g., Pastor
et al., 1992; O’Boyle et al., 1996; Harrington et al., 1998; Mer-
chant et al., 2008b), although some null results also exist (e.g.,
Ivry and Keele, 1989; Spencer and Ivry, 2005). The variation in the
results could be attributable to many factors. As mentioned pre-
viously, most studies have not looked at variability performance
on the synchronization section of the task. Further, not all studies
assessed participants both “on” and “off” dopaminergic replace-
ment therapy. Finally, many studies tested only one or two tapping
rates. There is substantial evidence to suggest that performance
might differ at different interval ranges, particularly in the “short”
milliseconds vs. “long” seconds range (e.g., Nakamura et al., 1978;
Peters, 1989).

The aim of this paper was to take a fresh and comprehen-
sive look at motor timing in PD using the synchronization–
continuation paradigm. We were interested in modeling both
accuracy and variability performance on the task, across both the
synchronization and continuation sections of the paradigm. The
aims for the study were: (1) to develop a novel way for describing

and modeling finger tapping data, (2) to look for group differ-
ences between participants with and without PD (3) to examine
if acute manipulation (“on” vs. “off”) or chronic (treated PD vs.
de novo PD) medication state influenced performance. To predict
the pattern of the data, we fitted a linear mixed model according
to three different predictors of performance: (1) groups of partic-
ipants (treated PD patients both “on” and “off” medication, PD
patients yet to start medication treatment, and healthy controls),
(2) tapping rate (250, 500, 1000, 2000 ms), and (3) the two types
of tapping (synchronization and continuation).

MATERIALS AND METHODS
PARTICIPANTS
The study included three groups: (a) 14 patients with PD-treated
with dopaminergic medication (PD-treated group), (b) eight PD
patients yet to start dopaminergic therapy (PD-de novo group),
and (c) 20 healthy participants (control group). Criteria for a
diagnosis of PD was based on the UK Parkinson Disease Society
Brain Bank criteria (Hughes et al., 1992), established by a physician
experienced in PD diagnosis and management.

Participants in the PD-treated group were tested both “on” and
“off” medication (PD-treated-on and PD-treated-off) where the
“off” state was conducted after overnight withdrawal of med-
ication (mean time since last medication = 14.43 h, SD = 3.48).
Two patients were tested in the “off” condition only, while the
remaining 12 were tested in both conditions, in a counterbalanced
order. Details of the patients, including medication, can be seen in
Table 1.

Participant groups were matched for age [PD-treated group:
mean age = 64.07 years, SD = 7.45 years; PD-de novo group: 62.62
(10.27); Control group: 67.65 (8.87)]. None of the participants
had a history of psychiatric or other neurological disease, head
injury or alcohol/drug abuse. Participants were screened for cogni-
tive impairment using the mini-mental state examination (MMSE:
Folstein et al., 1975), with all scoring above the required cut-off of
27. Scores on the beck depression inventory (BDI: Beck et al., 1961)
indicated that one participant in the control group had a score of 22
and one participant in the PD-treated group had a score of 20, both
above the cut-off for moderate self-reported depression (range 19–
29). All other participants were in the minimal or mild range. The
three groups did not differ in terms of age, estimated premorbid
verbal IQ (using the national adult reading test, NART: Nelson,
1982), or ability to maintain focused attention (paced auditory
serial addition task, PASAT: Gronwall and Wrightson, 1981; Mann
Whitney U, all p-values > 0.1). A summary of these measures can
be found in Table 2.

The study had the approval of the Joint Medical Ethics Com-
mittee of the National Hospital for Neurology and Neurosurgery
and the UCL Institute of Neurology and the North and East Devon
Local Research Ethics Committee. Written, informed consent was
obtained from all participants prior to the experiment.

TASKS
Clinical and behavioral measures of motor performance
Stage and severity of PD was assessed with the Hoehn and Yahr
rating scale (Hoehn and Yahr, 1967) and Part III (Motor) score
of the Unified PD Rating Scale (UPDRS: Fahn et al., 1987). In
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Table 1 | Dopaminergic medication for the PD-treated group (for

Sinemet, amount of levodopa in brackets).

Patient

number

Duration of

illness (years)

Dose of medication

1 9 Sinemet 550 mg (500 mg)

Ropinirole 6 mg

2 10 Sinemet Plus 250 mg (200 mg)

Sinemet CR 375 mg (300 mg)

Amantadine 100 mg

3 10 Pramipexole 2.16 mg

4 10 Ropinirole 12 mg

5 13 Sinemet 375 mg (300 mg)

Selegiline 10 mg

6 7 Sinemet CR 625 mg (500 mg)

Pergolide 3 mg

7 3 Ropinirole 24 mg

8 4 Pergolide 4.5 mg

9 11 Sinemet CR 250 mg (200 mg)

Sinemet 715 mg (650 mg)

Cabergoline 4 mg

10 10 Sinemet Plus 750 mg (600 mg)

Sinemet CR 250 mg (200 mg)

Pramipexole 3.18 mg

Amantadine 200 mg

11 10 Sinemet Plus 750 mg (600 mg)

Sinemet CR 250 mg (200 mg)

Ropinirole 24 mg

12 4 Sinemet Plus 375 mg (300 mg)

Cabergoline 3 mg

13 5 Sinemet CR 250 mg (200 mg)

14 17 Sinemet CR 375 mg (300 mg)

addition, motor speed and finger dexterity was measured with the
Purdue Pegboard (Tiffin and Asher, 1948). The test comprises of
a set of metal pegs and a pegboard. Participants pick up the pegs
one at a time and place them one by one in one in the pegboard as
quickly as possible. This was done three times: with the right hand,
with the left hand and bimanually. The number of pegs placed in
the holes in 30 s was recorded on each occasion.

Repetitive tapping task
The participant sat at a table in a quiet room. The task was pro-
grammed in Quick Basic and run on a Dell laptop. A response
box (15 cm × 8 cm × 5 cm) with two identical circular response
buttons (diameter 2.5 cm) was used to record responses. All the
participants were instructed to use the same button and to ignore
the second button. The travel of the button, which had a flat plas-
tic surface and made a “click” sound when pressed, was 2.5 mm
and the operating force was 0.8 N. All responses were made with
the dominant or choice index finger of the participant (Table 2).
Response times were recorded to the nearest millisecond. Partic-
ipants were instructed to tap in synchrony with a tone (1000 Hz,
duration 50 ms) presented with a constant inter-stimulus interval
(ISI) of either 250, 500, 1000, or 2000 ms (synchronization phase).
After 31 taps (30 intervals) the tone stopped and participants

continued to tap and maintain the rhythm for a further 30 inter-
vals (continuation phase). A loud tone indicated the end of the
trial.

Participants performed the task over two blocks. Each block
consisted of the presentation of four runs of trials (one of each
interval type, i.e., 250, 500, 1000, and 2000 ms), with a counter-
balanced order used. Erroneous responses were considered to be
those where the inter-tap interval (ITI) was 50% longer or shorter
than the target ISI. These responses were considered outliers and
were excluded from the analysis, although the remainder of the
run was kept. Relating to a concern over collecting enough valid
data, for some participants a particular ISI was administered more
than twice. This resulted in seven controls and three PD-de novo
with additional runs of trials. For the PD-treated group, only four
runs of trials were collected for three of the participants when
“off” medication, and only four runs of trials from one participant
and only seven runs of trials from two participants when “on”
medication. An illustration of the task is provided in Figure 1.

ANALYSIS
Descriptive data
Analysis of descriptive data used independent or paired t -tests, and
Mann Whitney U and Wilcoxon signed ranks tests, depending on
whether the data were normally distributed.

Repetitive tapping analysis
We used linear mixed models (LMM; also known as multilevel
analyses or hierarchical linear models) with categorical predictors
to explore the accuracy and variability of the responses of the
participants. The focus of the analysis was to find the best-fitting
model for the data and to explore the effects of these predictors and
their interactions. Our conclusions are based on LMMs computed
using the function lmer (Bates et al., 2011) running on R 2.13.0.
(R Development Core Team, 2011). Mixed-effects analyses (see
Kreft and De Leeuw, 1998; Snijders and Bosker, 1999; Raudenbush
and Bryk, 2002; Baayen, 2008) have considerable advantages over
traditional repeated measures analyses, which are based on quasi-
F tests, by-subjects analyses, combined by-subjects and by-items
analyses, and random regression (Maxwell and Delaney, 2004;
Baayen et al., 2008). In predicting the outcome variable – be it accu-
racy or variability – LMM allows us to assess how a participant’s
clinical and experimental classification predicts performance.

We measured accuracy by calculating a relative error value for
each tap: (ITI−ISI)/ISI. This value is comparable across ISIs and
provides a quantitative assessment of the directionality of each
tap: if the relative error is negative then the participant is ahead of
the beat, or “leading,” and if the relative error is positive then the
participant is behind the beat, or “lagging.” For the LMM of accu-
racy (the relative error), three categorical variables served as fixed
effects in the model: group (Group: PD-treated-on, PD-treated-
off, PD-de novo and control), ISI (ISI: 250, 500, 1000, and 2000 ms),
and task phase (Task phase: synchronization or continuation). The
participant served as the random effect.

We measured variability of performance by calculating the par-
ticipants’ deviation from the predicted group relative error in the
LMM of accuracy for each tap (i.e., participant observed relative
error minus group predicted relative error). This approach allows
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Table 2 | Descriptive data for the three participating groups.

PD-treated PD-de novo Control

OFF ON

N 14a 8b 20

Sex (M:F) 8:6 5:3 13:7

Handedness (R:L) 14:0 8:0 18:2

Hand used (R:L) 13:1 7:3 18:2

M SD M SD M SD M SD

Age (years) 64.07 7.45 62.62 10.27 67.65 8.87

Duration of PD (years) 8.79 3.87 3.38 1.85

MMSE 29.29 0.73 28.88 0.99 28.45 0.95

NART IQ 122.64 3.25 120.50 4.44 120.05 6.49

PASAT-errors 5.42 5.23 4.86 4.63 5.60 5.81

BDI 10.14 4.83 5.63 3.74 7.2 5.68

Pegboard-L 9.57 1.65 10.17 1.90 10.43 2.23 13.53 2.76

Pegboard-R 10.14 1.88 12.50 2.47 8.71 1.98 13.53 2.91

Pegboard-B 6.86 2.18 8.58 1.56 6.86 1.46 9.90 1.29

Hoehn and Yahr 2.50 0.44 1.68 0.54 1.63 0.58

UPDRS III 34.50 10.28 17.07 8.93 25.62 7.96

MMSE, mini-mental state examination; NART IQ, national adult reading test IQ; PASAT, paced auditory serial addition test-mean number of errors; BDI, beck depres-

sion inventory; Pegboard-L/R/B, Purdue Pegboard with left hand/right hand/bilaterally; UPDRS III, unified Parkinson’s disease rating scale – part III motor score.
aN = 12 for PASAT and Pegboard.
bN = 7 for PASAT and Pegboard.

FIGURE 1 |The repetitive tapping task. The red dotted lines indicate a
participant’s response, which can either lag or lead the target ISI. The tones
cease in the continuation phase, as indicated by the black dotted line. ISI,
inter-stimulus interval; ITI, inter-tap interval.

for an assessment of individual performance based on group-
specific estimates of accuracy, thus accounting for group patterns
of performance. This method also has the benefit of modeling
variability as it occurs on each trial, rather than calculating it as
mean performance across an entire run of trials (i.e., instead of
one variability score for a run of trials, we have 30 variability
scores per phase). In essence, our variability measurement quan-
tifies the deviation of each observed tap from the accuracy model
for a given group. Since random noise in the data results in outliers
that skew its distribution, this “residual” error does not conform to
a normal distribution. Therefore, we transformed it by calculating
the square root of the absolute value to create an adjusted mea-
sure of variability. A highly variable participant would produce a
wide range of

√
abs(residuals), while constant performance would

produce a narrow range. The LMM of variability was identical in

structure to the model for accuracy, with three categorical variables
as fixed effects and participant as random effect.

The significance of the fixed effects (predictors) was deter-
mined through interpretation of the 95% confidence intervals;
if the lower and upper confidence intervals did not cross zero then
the effect and corresponding estimated coefficient was considered
significant at p < 0.05.

RESULTS
CLINICAL AND BEHAVIORAL MEASURES OF MOTOR PERFORMANCE
As expected, for the Hoehn and Yahr scale and the UPDRS
Part III Motor score, the PD-treated group were significantly
worse in the “off” than “on” medication state [Hoehn and
Yahr: Wilcoxon signed ranks, Z = −3.11, p = 0.002; UPDRS:
t (13) = −7.50, p < 0.001]. The PD-treated group tested “off”
medication were significantly worse compared to the PD-de
novo group [Hoehn and Yahr: t (20) = −4.00, p = 0.001; UPDRS:
t (20) = −2.10, p = 0.05], reflecting more advanced stage of illness
in the former group. However, the severity of motor symptoms
of the PD-treated group were not significantly worse when they
were compared in the “on” medication state to the de novo group,
although there was a trend toward poorer performance for the
UPDRS (UPDRS: p = 0.07; Hoehn and Yahr: p > 0.9).

For the Purdue pegboard, statistical analysis was confined to
the right hand data to reduce the number of statistical tests; the
right hand data were selected as they produced the most diver-
gent results. Performance indicated that the PD-treated group
when “off” medication and the PD-de novo group performed
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significantly more poorly than the control group. (Mann Whitney
U for control vs. PD-treated-off: U = 38.50, p < 0.001. For control
vs. PD-de novo: U = 8.50, p < 0.001; Bilateral U = 6.5, p < 0.001).
However, when the treated PD group was “on” medication they
did not differ from controls (p > 0.4). Not surprisingly, therefore,
pegboard performance was better “on” than “off” medication for
the PD-treated group [t (11) = 4.60, p = 0.001]. The PD-de novo
group were equivalent to the PD-treated group when the treated
patients were “off” medication (p < 0.1), but were worse than the
treated group when they were “on” medication [t (16) = −2.95,
p = 0.005]. See Table 2 for a summary of these results.

ACCURACY
We used three predictors (Group, ISI, and Task Phase) as fixed
effects to model relative error. The model also included three
random-effects: a subject-by-subject variation in intercept, in the
effect of ISI, and in the effect of Task Phase. The best-fitting LMM
(Akaike information criterion, AIC was used for model compari-
son) included the triple interaction, all three two-way interactions
and all main effects as fixed effects (see Table A1 in Appendix for
the model coefficients and confidence intervals). Figure 2 shows
the relative error predicted by this model for of all the conditions;
the error bars represent 1 SE from the predicted value. To aid
understanding of the complex data, we have presented it in two
ways: Figure 2A: with the groups on the x axis to enable direct
comparison of the groups at each ISI; Figure 2B: with the ISI
on the x axis to enable the individual pattern for each group to be
more easily ascertained. The model was complex in that it included
the significant three-way interaction and all significant two-way
interactions. Thus, we cannot explain the effect of one predictor
without considering the variation of the other predictors. Reflect-
ing this, we focused on patterns of interest with a second, refined
model fitted to aid interpretation of these patterns.

Results are best interpreted by first focusing on the longer
intervals (500, 1000, and 2000 ms) and then the shortest interval
(250 ms). For the longer intervals, all groups of participants tapped
with a negative relative error, i.e., responses were ahead of the beat.
Further, all groups had smaller (i.e., closer to 0) predicted relative
error during the synchronization phase (see Figure 2A). At 500 ms,
the PD-de novo group had a greater negative error than the con-
trol group, and this pattern persisted at 1000 ms. Aside from this
exception, performance across the groups was not distinguishable.

At the 250-ms ISI the pattern was more complex and was where
meaningful group differences were observed. During the synchro-
nization phase at 250 ms the control participants tapped with a
positive relative error, i.e., they tapped “behind the beat.” This is
in contrast to the PD-treated group (both “on” and “off” medica-
tion), who showed a negative or “ahead of the beat” performance
at 250 ms. The PD-de novo group was more similar to the control
group than the PD-treated group at 250 ms and showed a positive
mean relative error score (but note that the SE bar included 0).

During the continuation phase at 250 ms, the pattern of effects
was similar but the differences between control and PD-treated
patients were more striking. Again, the control participants tapped
with a positive relative error (behind the bead) and the PD-treated
group (both “on” and “off” medication) showed a negative relative
error (ahead of the beat). As with the synchronization phase, the

FIGURE 2 | Accuracy as assessed by predicted relative error, for

illustrative purposes presented both by ISI (A) and Group (B). The error
bars represent 1 SE from the predicted relative error. For (A), lines
connecting the data points do not imply that intermediate levels exist
between the treatments. Rather they serve to facilitate the understanding
of the data. Group: Ctrl, control; De novo, PD-de novo; PD-off,
PD-treated-off; PD-on, PD-treated-on; Task Phase: Synch, synchronization;
Cont, continuation; ISI, inter-stimulus interval.

PD-de novo group was more similar to the control group than the
PD-treated group.

We developed a second model to assess our interpretation
of the pattern of data in a manner analogous to post hoc test-
ing. We used three newly coded predictors as fixed effects to
model relative error: Treatment [treated (PD-on and PD-off) vs.
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untreated (PD-de Novo and Control)], ISI [short (250 ms) vs. long
(500, 1000, and 2000 ms)], and Task Phase (synchronization vs.
continuation). The model included the same random-effects as in
the previous model: a subject-by-subject variation in intercept, in
the effect of ISI, and in the effect of Task Phase. The three predic-
tors appeared as a significant triple interaction in the new model.
The estimated values of the model coefficients and associated con-
fidence intervals can be seen in Table 3, whilst Figure 3 shows the
relative error predicted by this model for of all the conditions.
This analysis more clearly illustrated the pattern evident in the
first model. First, the treated and untreated groups were indistin-
guishable at the long ISI (500, 1000, 2000 ms), with both groups
showing greater relative error in the continuation phase. Second,
the groups diverged at the short ISI (250 ms), with the treated
group showing hastening (negative relative error) compared to
the untreated group. Further, the hastening was more pronounced
for the continuation phase, whereas the untreated group showed
no differentiation between phases at the short ISI (see Figure A1
in Appendix for supporting evidence in two post hoc models for

Table 3 | Estimated values of the model coefficients for the second

model of accuracy (relative error).

Effect Estimate Lower CI Upper CI

Intercept (short, untreated, synch) 0.020 0.014 0.026

ISI −0.024 −0.030 −0.018

Task phase 0.003 −0.003 0.008

Treatment −0.034 −0.046 −0.021

ISI × task phase −0.039 −0.045 −0.032

ISI × treatment 0.031 0.021 0.042

Task phase × treatment −0.022 −0.031 0.014

Task phase × treatment × ISI 0.028 0.018 0.038

CI, confidence intervals.

FIGURE 3 |The second model of accuracy comparing the PD patients

receiving dopaminergic medication (treated group) to PD patients

who were dopamine naïve and healthy controls (untreated group). ISI
tapping rates are collapsed into short (250 ms) and long (500, 1000, and
2000 ms). The error bars represent 1 SE from the predicted relative error.
Lines connecting the data are placed to illustrate group differences. Synch,
synchronization phase; Cont, continuation phase.

the short and long intervals). In sum, participants with a diagno-
sis of PD who have been treated with dopaminergic medication
(whether “off” or “on” at the time of testing) are differentiated
from control and de novo PD patients at the short ISI of 250 ms,
but not at longer intervals.

VARIABILITY
Our approach to modelling variability was identical to our LMM
model for accuracy. We used the same three predictors as fixed
effects: Group, ISI, and Task Phase. The model also included the
same three random-effects: a subject-by-subject variation in inter-
cept, in the effect of ISI, and in the effect of Task Phase. The
best-fitting LMM included the triple interaction, all three two-
way interactions and all main effects as fixed effects, see Table A2
in Appendix for the model coefficients and confidence intervals.
Figure 4 shows the variability predicted by this model for of all
the conditions; the error bars represent 1 SE from the predicted
value. As with the accuracy model, to aid understanding of the data
we have presented it in two formats: Figure 4A: with the groups
on the x axis to enable direct comparison of the groups at each
ISI; Figure 4B: with the ISI on the x axis to enable the individual
pattern for each group to be more easily ascertained. Again, as
the three-way interaction was significant we focused on complex
patterns of interest.

When comparing the two task phases, we found that the pre-
dicted variability of the synchronization phase was lower than that
of the continuation phase. Across all groups, variability was lowest
at the 500-ms condition and increased across the 1000- and 2000-
ms ISIs, particularly during the continuation phase. Figure 4B
clearly illustrates that the difference between the synchronization
and continuation phases increased with the ISI for the intervals
500-2000 ms. It is noteworthy that the variability between groups
and task phases at the 250-ms ISI was overlapping and highly sim-
ilar. Compared to the accuracy models, group differences were less
striking. However, there was some suggestion of differentiation
of the patient groups from the control group at the higher ISIs
(see Figure 4A). First, the PD-treated group showed reduced vari-
ability at the 1000 ISI compared to the other groups during the
continuation phase, this was more evident when they were “off”
medication. This pattern was less distinct at 2000 ms and with evi-
dence more compelling for the synchronization phase. Second, the
PD-de novo group showed increased variability compared to the
other groups at the 2000 ISI, with the effect being more distinct
for the continuation phase.

DISCUSSION
This study applied a linear mixed model approach to explore
the relative patterns of accuracy and variability on the
synchronization–continuation task for treated and de novo
patients with PD and healthy controls. In one of the most compre-
hensive assessments to date, our primary finding is that the treated
PD group are distinguishable from the PD-de novo and control
groups when tapping at the 250-ms rate. The treated PD patients
tap “ahead” of the beat, whilst the other groups tap “behind” the
beat. We liken this anticipatory motor response to the clinical
phenomenon of motor “hastening” or festination. Regarding vari-
ability, motor timing at an ISI of 500 ms reduced the variability
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FIGURE 4 | Variability as assessed by participant deviation from

predicted relative error, for illustrative purposes presented both by ISI

(A) and Group (B). The error bars represent 1 SE from the predicted
relative error. For (A), lines connecting the data are placed to illustrate
group differences. Group: Ctrl, control; De novo, PD-de novo; PD-off,
PD-treated-off; PD-on, PD-treated-on; Task Phase: Synch, synchronization;
Cont, continuation; ISI, inter-stimulus interval.

for all participants, which we speculate is indicative of a preferred
finger tapping rate. For the longer (>250 ms) intervals, accuracy,
and variability were compromised during the self-paced contin-
uation phase compared to the synchronization phase. Related to
this, the continuation phase was a better discriminator of per-
formance, with the participants with PD showing more atypical
motor timing behavior during continuation tapping.

Dopaminergic medication, although improving the UPDRS
Part III motor score, did not have a substantive effect on motor
timing performance in the PD-treated group. There are several
possible explanations for this finding. The overnight medication
withdrawal may be too short, or the individual pharmacokinetic or
pharmacodynamic properties of different dopaminergic therapies
may need to be taken into account. An alternative interpretation is
that dopaminergic intervention does not produce robust changes
in repetitive finger tapping or that the use of compensatory motor
circuits when“off”medication can enable performance (see Jahan-
shahi et al., 2010). Previous research on repetitive tapping in PD
has tested participants either exclusively “on” or “off” medication
(e.g., Pastor et al., 1992; Freeman et al., 1993; Harrington et al.,
1998; Yahalom et al., 2004), thus surprisingly little data on the
effect of dopaminergic therapy on motor timing exists. The data
that do exist are distinctly mixed in their findings. Pastor et al.
(1992) assessed nine of their 42 PD patients “off” medication and
after administration of 250 mg of levodopa. Dopaminergic therapy
improved accuracy, as measured by the mean ITI, for the shorter
intervals (400, 500, and 666 ms) but did not affect longer intervals
(1000 and 2000 ms). O’Boyle et al. (1996) found that variability
was worse “off” than “on” medication, although accuracy was not
significantly different. Contradicting this, another study suggests
no differences in variability between PD whether “on” or “off”
medication (Merchant et al., 2008a).

To assess if treated PD patients performed differently to the
other two groups, we compared the accuracy data collected both
“off” and “on” medication (treated group) to healthy controls and
de novo PD patients (untreated group). We found significant dif-
ferences in the direction of the predicted relative error between the
two groups for “short” (250 ms) compared to “long” (500, 1000,
and 2000 ms) ISIs. This suggests that either long-term medica-
tion use influences performance, or that progression of PD results
in more notable alterations to timing accuracy, especially during
short intervals. A longitudinal study with a focus on modeling
therapeutic dose and disease severity could help disambiguate
these alternative hypotheses.

For all participants, performance on the synchronization phase
was better than on the continuation phase for both accuracy and
variability during the longer (500, 1000, 2000 ms) intervals. Previ-
ously, papers investigating motor timing in PD have tended not to
explore the synchronization phase. One previous study found that
performance for the PD group deteriorated in the continuation
phase but that control group performance was maintained (Free-
man et al., 1993). Our data are clear in showing that all groups
found maintaining the rhythm more difficult in the continuation
phase for intervals ≥ 500 ms. For these longer intervals, the dif-
ference in variability becomes greater as the target ISI increases,
whereas accuracy is more stable. We have previously demonstrated
that synchronization phase and continuation phase tapping acti-
vate distinct regions,which demonstrate the differential behavioral
demands (Jahanshahi et al., 2010). Particularly, the continuation
phase is unique in activating the dorsolateral prefrontal cortex
(Jahanshahi et al., 2010), which is known to play a role in “willed”
or “internally generated” actions (Jahanshahi et al., 1995). It has
been shown that people with PD show greater differences from
healthy controls in neural activation for internally generated than
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externally triggered movements (Jahanshahi et al., 1995). This
would predict a polarized performance between the continuation
and synchronization phases for the PD patients. Indeed, the data
indicate that the PD group show greater relative impairment on
the continuation phase than the synchronization phase.

ACCURACY OF MOTOR TIMING
For the accuracy model, the key finding is that participants in
the PD-treated group showed a hastening of their tapping (i.e.,
were “ahead of the beat”) at 250 ms, whereas the PD-de novo and
control groups were behind the beat. This effect was more strik-
ing in the continuation phase. Indeed, for the continuation phase
the estimated means and SEs of the two groups were distinctly
either side of zero relative error, suggesting potential in the future
for this task to be used in discriminating treated PD from other
populations. A second model that dichotomized the intervals into
“short” (250 ms) and “long” (500, 1000, 2000 ms) confirmed that
the 250-ms interval can successfully discriminate the PD-treated
group from the other participants in the study, whereas the groups
were equivalent at the longer durations. The PD-de novo and con-
trol groups were able to maintain their level of accuracy at 250 ms
during the more challenging continuation phase, whereas the per-
formance of the PD-treated group became more extreme. For the
longer durations,all groups showed deterioration in accuracy from
the synchronization phase to the continuation phases. Indeed, the
groups were close to zero relative error during the synchronization
phase but behind the beat in the continuation phase.

If the control group is taken as the model for “typical” per-
formance, the pattern of data suggest that the PD-treated group
show an atypical hastening in their tapping at very short (250 ms)
intervals. This finding is similar to the clinical phenomenon of fes-
tinating movements. Festination is the tendency to speed up when
performing a repetitive movement and, for experimental studies,
is typically identified when movement rate exceeds that of the
healthy control group by a specified margin (e.g., Logigian et al.,
1991; Moreau et al., 2007). Previously, oral festination has been
measured by asking participants to repeat a syllable at different
frequencies, synchronized to an auditory pacing tone (Logigian
et al., 1991; Moreau et al., 2007). Consistent with our findings,
festination (measured as either 2 or 3 SDs from control perfor-
mance) was apparent for ISIs between 200 and 333 ms in the
study by Moreau et al. (2007) and for ISIs below 400 ms in the
study by Logigian et al. (1991) and was not observed for longer
intervals. Speeded movements during finger and wrist versions
of the synchronization (Nakamura et al., 1978; Logigian et al.,
1991; Freeman et al., 1993; Stegemöller et al., 2009) and con-
tinuation tasks (Freeman et al., 1993) have also been observed.
Nakamura et al. (1978) and Stegemöller et al. (2009) reported the
phenomenon around an ISI of 400 ms, whereas Freeman et al.
(1993) showed hastening compared to the control group in some
participants at intervals between 250 and 500 ms. Logigian et al.
(1991) required participants to perform isometric contractions of
the index finger at different frequencies. In line with our find-
ings, performance was comparable to controls at ISIs of 833 and
476 ms, but speeded between 185 and 385 ms, with the effects most
obvious at 286 ms. There is a paucity of studies exploring the neu-
robiological correlates of motor festination in PD. Previous studies

have speculated that aberrant oscillatory brain activity (Nakamura
et al., 1978; Stegemöller et al., 2009) or motor activity influenced
by tremor rate (Logigian et al., 1991) may explain the phenome-
non. Stegemöller et al. (2009) found that increases in movement
frequency were accompanied by a decrease in movement ampli-
tude in participants with PD. Future research could benefit from
integrated physiological exploration.

In interpreting the patient group data it is important to com-
ment of the performance of our control group in comparison to
previously reported healthy populations. It has been established
that synchronization with a pacing stimulus produces a nega-
tive relative error in healthy individuals, i.e., tapping ahead of
the beat (e.g., see Aschersleben, 2002). As with previous research
(e.g., Flach, 2005), we find that the negative relative error is main-
tained in the continuation phase and is exaggerated. Flach’s (2005)
explanation for this phenomenon is that the internal timing mech-
anism is systematically underestimating the ISI and this is being
maintained in the self-paced condition. All our groups showed
a negative relative error at ISIs of 500, 1000, and 2000 ms, but
the control group showed a clear positive relative error, or tapping
behind the beat, at 250 ms. A similar pattern of findings was found
in a much earlier study by Peters (1989). Here, participants tapped
in synchrony at ISIs ranging from 180 to 1000 ms. Healthy par-
ticipants tapped behind the beat at 180 and 210 ms and ahead of
the beat at intervals of 240 ms and greater. These findings speak to
hypotheses that seek to establish a qualitative difference between
different timing intervals and it has been speculated that different
mechanisms might be in operation for the timing of very short
intervals. One proposal is that when tapping speed is sufficiently
fast the participant no longer experiences the taps as individual
events and performance is in “automatic” rather than “controlled”
mode (Peters, 1989). Within our own dataset, further evidence for
a dissociation comes from the observation that the accuracy of per-
formance was maintained in the switch to continuation tapping
in the control group at 250 ms, whereas performance deteriorated
for the longer intervals.

The difference between the PD-treated group and the other
two groups at 250 ms was the most compelling evidence of dif-
ferential accuracy performance in PD for motor timing. However,
aside from the PD-de novo group showing greater negative error
at 500 ms, and to a lesser extent at 1000 ms, there was no other
evidence that the PD groups (PD-treated or PD-de novo) per-
formed differently compared to the control group. Reflecting the
current study, previous research has reported unimpaired repet-
itive timed movements in PD at durations of and above 476 ms
(Logigian et al., 1991), 666 ms (Pastor et al., 1992) and 1000 ms
(Jahanshahi et al., 2010). O’Boyle et al. (1996), Harrington et al.
(1998), and Ivry and Keele (1989) have all found that a group
with PD tapped at a significantly faster rate than a control group
when “on” medication at intervals between 300 and 600 ms. In
contrast, Pastor et al. (1992) reported that a group with PD were
significantly slower at tapping with an ISI of 400 and 500 ms. In
summary, despite the commonly asserted proposition that motor
timing accuracy is impaired in PD, patients often perform well at
longer intervals. The interval between 400 and 600 ms is subject to
the most contrary findings, indicating that this is the key transition
period for discriminating between groups. In light of this, future
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studies should place emphasis on the tapping intervals ≤ 600 ms
when exploring accuracy in PD.

VARIABILITY OF MOTOR TIMING
Our variability measure was specifically calculated to take account
of how much the error for each tap deviated from the predicted
error for the group. Thus, we were quantifying how typical a
participant’s performance was of their particular group.

Despite the significant three-way interaction, group differences
were less striking for variability than for accuracy. The most dis-
tinct patterns were that the de novo PD group showed greater
variability at the 2000-ms interval compared to all groups and
particularly the treated PD group. One possibility is that this
greater motor timing variability in the PD-de novo reflects the
greater heterogeneity of this group. Alternatively, it is possible that
the long-term use of dopamine has enduring effects on motor
performance that persevere to an extent even in the “off” state.
These effects could operate to reduce variability in motor timing
in the treated PD group. Similar to previous work on cognition
(e.g., Kulisevsky et al., 2000), future investigation of the chronic
effect of dopaminergic therapy on motor timing in patients with
or without motor fluctuations would be informative. There was
some, albeit not consistent, suggestion of the PD-treated group
showing reduced variability compared to the other groups at the
higher intervals, most compellingly for the continuation phase at
1000 ms. This is difficult to interpret although this is not the first
study to report reduced variance in PD (e.g., Jones et al., 2008).

Previous research has almost exclusively focused on variability
during the continuation task. Two studies using a target interval of
550 ms have found no evidence of impaired variability in patients
with PD, at least at the group level (Ivry and Keele, 1989; Spencer
and Ivry, 2005), although O’Boyle et al. (1996) reported impair-
ment using an identical duration. However,Merchant et al. (2008a)
reported a deficit in PD for intervals between 350 and 1000 ms,
albeit using a much shorter number of taps, and Harrington et al.
(1998) reported impairment in PD for intervals of 300 and 600 ms.
Pastor et al. (1992) also found increased variability for repetitive
wrist movements at ISIs ranging from 400 to 2000 ms ISI. Vari-
ability in the synchronization task does not appear to be impaired
in PD in previous studies, at least at the whole group level (e.g.,
Yahalom et al., 2004). However, the approach taken in our study is
somewhat different to previous work. In including each tap in the
model we improve the fidelity of our analysis. Further, we compare
taps to the predicted group relative error, rather than a person’s
own mean. What is clear in the current data set is that all groups
showed the same pattern of increasing variability between 500 and
2000 ms, with the variability produced by the continuation phase
becoming increasingly divergent from the better synchronization
phase performance.

It is notable that variability was lowest in all groups for the
500-ms interval. Yahalom et al. (2004) asked participants with and
without PD to tap at their most comfortable pace. For the con-
trol group this was around 580 ms and for the PD group around
685 ms. Thus, 500 ms is an interval that approximately aligns with
the rhythm that participants are likely to find most “natural” and
as a result show less variability in their performance. Given that
our accuracy data, combined with a review of previous litera-
ture, suggests that the point at which the accuracy of repetitive
tapping is compromised in PD is somewhere between 250 and
500 ms, this further supports the idea that this very short interval
range is of particular significance in understanding motor tim-
ing behavior. It can be hypothesized that participants will not
show atypical accuracy and variability at their preferred tapping
rate, so perhaps the mixed results across studies reflect that some
groups with PD have a higher natural rhythm preference. Reflect-
ing on both the work of Yahalom et al. (2004) and Logigian
et al. (1991), further work could seek to combine data on motor
timing using the synchronization–continuation task, natural or
preferred tapping rate preference, and inherent tremor oscilla-
tion rate. The interplay between these three factors may prove
illuminating.

CONCLUSION
Our data find a striking phenomenon of tapping ahead of the
beat for treated patients with PD at intervals of 250 ms. The data
add to a sparse but generally consistent literature that festina-
tion occurs in PD for fast (ISI < 500 ms) repetitive movements.
Whereas patients with PD diverge from control performance at
short intervals for measures of accuracy, they are more distinct at
longer intervals (ISI of 1000 and 2000 ms) for variability. Whilst
dopaminergic medication state at the time of testing (“on”vs.“off”
medication) did not affect performance across any of the condi-
tions, there is suggestion of differences between the treated and de
novo patients for both accuracy and variability. This highlights the
need to look at chronic medication effects in PD. The performance
of the PD patients and the control group were more similar for
the synchronization phase than the continuation phase. This likely
reflects the difficulties that individuals with PD have with inter-
nally generated movements (e.g., Jahanshahi et al., 1995). Future
research would benefit from exploring heterogeneity within the
population with PD as well as correlating clinical phenotypes, such
as festinating gait, to motor timing.
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APPENDIX

Table A1 | Estimated values of the model coefficients for the model of accuracy (relative error).

Effect Estimate Lower CI Upper CI

Intercept (250 ms, cont, control) 0.02796 0.02252 0.03362

ISI (500 ms) −0.05731 −0.06485 −0.04961

ISI (1000 ms) −0.06992 −0.07774 −0.06219

ISI (2000 ms) −0.06377 −0.07123 −0.05622

Type (synch) −0.00261 −0.00959 0.00426

Group (de novo) −0.02546 −0.03532 −0.01552

Group (PD-off) −0.06268 −0.07202 −0.05343

Group (PD-on) −0.06038 −0.07014 −0.05071

ISI (500 ms) × type (synch) 0.02792 0.01841 0.03712

ISI (1000 ms) × type (synch) 0.04325 0.0338 0.05253

ISI (2000 ms) × type (synch) 0.03589 0.02674 0.045

ISI (500 ms) × group (de novo) 0.0014 −0.01229 0.01545

ISI (1000 ms) × group (de novo) 0.00348 −0.01261 0.0198

ISI (2000 ms) × group (de novo) 0.02452 0.00988 0.03915

ISI (500 ms) × group (PD-off) 0.05864 0.04627 0.07094

ISI (1000 ms) × group (PD-off) 0.05693 0.04411 0.06997

ISI (2000 ms) × group (PD-off) 0.05855 0.04586 0.07125

ISI (500 ms) × group (PD-on) 0.05645 0.04377 0.06948

ISI (1000 ms) × group (PD-on) 0.06452 0.0517 0.07731

ISI (2000 ms) × group (PD-on) 0.05882 0.04617 0.07153

Group (de novo) × type (synch) 0.01603 0.00337 0.02903

Group (PD-off) × type (synch) 0.02245 0.01055 0.03399

Group (PD-on) × type (synch) 0.02302 0.01014 0.03564

ISI (500 ms) × type (synch) × group (de novo) 0.00995 −0.00669 0.02709

ISI (1000 ms) × type (synch) × group (de novo) 0.00118 −0.01615 0.01778

ISI (2000 ms) × type (synch) × group (de novo) −0.02156 −0.03839 −0.00498

ISI (500 ms) × type (synch) × group (PD-off) −0.02182 −0.0374 −0.0062

ISI (1000 ms) × type (synch) × group (PD-off) −0.02043 −0.03595 −0.00501

ISI (2000 ms) × type (synch) × group (PD-off) −0.02391 −0.03921 −0.0081

ISI (500 ms) × type (synch) × group (PD-on) −0.01727 −0.0334 −0.00134

ISI (1000 ms) × type (synch) × group (PD-on) −0.02983 −0.0461 −0.01406

ISI (2000 ms) × type (synch) × group (PD-on) −0.02465 −0.04108 −0.00863

CI, confidence interval.
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Table A2 | Estimated values of the model coefficients for the model of variability.

Effect Estimate Lower CI Upper CI

Intercept (250 ms, cont, control) 0.2517 0.243096 0.260687

ISI (500 ms) −0.048018 −0.058764 −0.037401

ISI (1000 ms) −0.000902 −0.01147 0.009778

ISI (2000 ms) 0.028457 0.018295 0.03854

Type (synch) −0.008171 −0.018128 0.001891

Group (de novo) −0.015247 −0.03115 0.000501

Group (PD-off) 0.016445 0.002237 0.030399

Group (PD-on) 0.002018 −0.012465 0.016332

ISI (500 ms) × type (synch) −0.013017 −0.024462 −0.001402

ISI (1000 ms) × type (synch) −0.054922 −0.066291 −0.043449

ISI (2000 ms) × type (synch) −0.058917 −0.070028 −0.048043

ISI (500 ms) × group (de novo) 0.019669 0.000739 0.039167

ISI (1000 ms) × group (de novo) 0.018481 −0.003951 0.040627

ISI (2000 ms) × group (de novo) 0.06166 0.04277 0.081444

ISI (500 ms) × group (PD-off) −0.007414 −0.024044 0.009641

ISI (1000 ms) × group (PD-off) −0.05216 −0.070004 −0.034681

ISI (2000 ms) × group (PD-off) −0.023282 −0.04043 −0.006039

ISI (500 ms) × group (PD-on) −0.007361 −0.02444 0.010221

ISI (1000 ms) × group (PD-on) −0.013041 −0.029997 0.004508

ISI (2000 ms) × group (PD-on) −0.004706 −0.021931 0.012593

Group (de novo) × type (synch) 0.033879 0.014932 0.05142

Group (PD-off) × type (synch) 0.001712 −0.014814 0.018176

Group (PD-on) × type (synch) −0.013099 −0.030587 0.004073

ISI (500 ms) × type (synch) × group (de novo) −0.042551 −0.062729 −0.021934

ISI (1000 ms) × type (synch) × group (de novo) −0.019894 −0.040783 0.000742

ISI (2000 ms) × type (synch) × group (de novo) −0.064971 −0.085184 −0.044943

ISI (500 ms) × type (synch) × group (PD-off) −0.012014 −0.031389 0.007652

ISI (1000 ms) × type (synch) × group (PD-off) 0.036763 0.017727 0.055633

ISI (2000 ms) × type (synch) × group (PD-off) −0.011303 −0.030111 0.007829

ISI (500 ms) × type (synch) × group (PD-on) 0.01592 −0.00381 0.035583

ISI (1000 ms) × type (synch) × group (PD-on) 0.016524 −0.00282 0.036193

ISI (2000 ms) × type (synch) × group (PD-on) 0.007052 −0.012213 0.026366

CI, confidence interval.
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FIGURE A1 | Separate post hoc models for the accuracy (relative error)

of short (ISI = 250 ms) and long (ISI ≥ 500 ms) intervals. As predicted,
the Group (treated vs. untreated) ×Task Phase (Synchronization vs.
Continuation) interaction was significant in the Short ISI model, but not in
the Long ISI model.
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