41 research outputs found

    Analyzing Reporting of Hospital Acquired Pressure Injuries in the Acute Care Setting

    Get PDF
    This project was conducted at a level one trauma center, acute care hospital consisting of 459 beds. With more patients than wound care nurses, hospital-acquired pressure injuries (HAPIs) have become a significant problem for this hospital. A gap between reporting in the Safety and Quality Information System (SQIS) and the reporting that takes place in electronic health record (EHR) with wound care consults has been observed. A root cause analysis (RCA) was used to identify discrepancies. The accurate collection of data was identified as paramount providing information necessary to create improvements and lower the occurrence of HAPIs. The conceptual framework which guided this project to decrease the incidence of inaccurate HAPI documentation was the PDSA model/cycle. The Lewin Change Model was applied as the leadership theory. The cost of one HAPI is 14,506andcanpotentiallycostthehospital14,506 and can potentially cost the hospital 2,088,864 per year. With the proper education to prevent HAPIs from occurring, the medical center can save on average $1,044,432 per year. The plan is to educate nurses on the prevention, correct staging, and proper documentation of HAPIs. Using process and balance measures, the team can study the effectiveness of the interventions. Additionally, nurses who attended educational sessions completed pre and post tests to assess their knowledge which was then compared through a bar chart. With all these efforts, expected outcomes are to sustain a 50% decrease in HAPIs at this hospital

    Isogenic models of hypertrophic cardiomyopathy unveil differential phenotypes and mechanism-driven therapeutics

    Get PDF
    Background: Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular condition. Despite being strongly associated with genetic alterations, wide variation of disease penetrance, expressivity and hallmarks of progression complicate treatment. We aimed to characterize different human isogenic cellular models of HCM bearing patient-relevant mutations to clarify genetic causation and disease mechanisms, hence facilitating the development of effective therapeutics. Methods: We directly compared the p.β-MHC-R453C and p.ACTC1-E99K HCM-associated mutations in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and their healthy isogenic counterparts, generated using CRISPR/Cas9 genome editing technology. By harnessing several state-of-the-art HCM phenotyping techniques, these mutations were investigated to identify similarities and differences in disease progression and hypertrophic signaling pathways, towards establishing potential targets for pharmacological treatment. CRISPR/Cas9 knock-in of the genetically-encoded calcium indicator R-GECO1.0 to the AAVS1 locus into these disease models resulted in calcium reporter lines. Results: Confocal line scan analysis identified calcium transient arrhythmias and intracellular calcium overload in both models. The use of optogenetics and 2D/3D contractility assays revealed opposing phenotypes in the two mutations. Gene expression analysis highlighted upregulation of CALM1, CASQ2 and CAMK2D, and downregulation of IRF8 in p.β-MHC-R453C mutants, whereas the opposite changes were detected in p.ACTC1-E99K mutants. Contrasting profiles of nuclear translocation of NFATc1 and MEF2 between the two HCM models suggest differential hypertrophic signaling pathway activation. Calcium transient abnormalities were rescued with combination of dantrolene and ranolazine, whilst mavacamten reduced the hyper-contractile phenotype of p.ACTC1-E99K hiPSC-CMs. Conclusions: Our data show that hypercontractility and molecular signaling within HCM are not uniform between different gene mutations, suggesting that a ‘one-size fits all’ treatment underestimates the complexity of the disease. Understanding where the similarities (arrhythmogenesis, bioenergetics) and differences (contractility, molecular profile) lie will allow development of therapeutics that are directed towards common mechanisms or tailored to each disease variant, hence providing effective patient-specific therapy

    Peripheral T-lymphocytes express WNT7A and its restoration in leukemia-derived lymphoblasts inhibits cell proliferation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>WNT7a, a member of the Wnt ligand family implicated in several developmental processes, has also been reported to be dysregulated in some types of tumors; however, its function and implication in oncogenesis is poorly understood. Moreover, the expression of this gene and the role that it plays in the biology of blood cells remains unclear. In addition to determining the expression of the <it>WNT7A </it>gene in blood cells, in leukemia-derived cell lines, and in samples of patients with leukemia, the aim of this study was to seek the effect of this gene in proliferation.</p> <p>Methods</p> <p>We analyzed peripheral blood mononuclear cells, sorted CD3 and CD19 cells, four leukemia-derived cell lines, and blood samples from 14 patients with Acute lymphoblastic leukemia (ALL), and 19 clinically healthy subjects. Reverse transcription followed by quantitative Real-time Polymerase chain reaction (qRT-PCR) analysis were performed to determine relative <it>WNT7A </it>expression. Restoration of WNT7a was done employing a lentiviral system and by using a recombinant human protein. Cell proliferation was measured by addition of WST-1 to cell cultures.</p> <p>Results</p> <p>WNT7a is mainly produced by CD3 T-lymphocytes, its expression decreases upon activation, and it is severely reduced in leukemia-derived cell lines, as well as in the blood samples of patients with ALL when compared with healthy controls (<it>p </it>≤0.001). By restoring <it>WNT7A </it>expression in leukemia-derived cells, we were able to demonstrate that WNT7a inhibits cell growth. A similar effect was observed when a recombinant human WNT7a protein was used. Interestingly, restoration of <it>WNT7A </it>expression in Jurkat cells did not activate the canonical Wnt/β-catenin pathway.</p> <p>Conclusions</p> <p>To our knowledge, this is the first report evidencing quantitatively decreased <it>WNT7A </it>levels in leukemia-derived cells and that <it>WNT7A </it>restoration in T-lymphocytes inhibits cell proliferation. In addition, our results also support the possible function of <it>WNT7A </it>as a tumor suppressor gene as well as a therapeutic tool.</p
    corecore