6,131 research outputs found
Using sports infrastructure to deliver economic and social change: Lessons for London beyond 2012
Over the last two decades, there has been a
new trend emerging within sport, which has
seen a shift, from investment for the sake of
sport, to investment in sport for good (Sport
England, 2008). In the context of the latter
approach, there has been an emergence of
the use of sport to address regeneration objectives,
largely stemming from the belief of government
and other sporting and non-sporting
organizations, that it can confer a wide range
of economic and social benefits to individuals
and communities beyond those of a purely
physical sporting nature, and can contribute
positively to the revitalization of declining
urban areas (BURA, 2003). This commentary
will examine regeneration legacy in the context
of the London Olympic Games. In particular,
it will focus on the use of sports stadia
as a tool for delivering economic and social
change, and by drawing upon previous examples,
suggest lessons London can learn to
enhance regeneration legacies beyond 2012
Targeted search for continuous gravitational waves: Bayesian versus maximum-likelihood statistics
We investigate the Bayesian framework for detection of continuous
gravitational waves (GWs) in the context of targeted searches, where the phase
evolution of the GW signal is assumed to be known, while the four amplitude
parameters are unknown. We show that the orthodox maximum-likelihood statistic
(known as F-statistic) can be rediscovered as a Bayes factor with an unphysical
prior in amplitude parameter space. We introduce an alternative detection
statistic ("B-statistic") using the Bayes factor with a more natural amplitude
prior, namely an isotropic probability distribution for the orientation of GW
sources. Monte-Carlo simulations of targeted searches show that the resulting
Bayesian B-statistic is more powerful in the Neyman-Pearson sense (i.e. has a
higher expected detection probability at equal false-alarm probability) than
the frequentist F-statistic.Comment: 12 pages, presented at GWDAW13, to appear in CQ
Turboprop cargo aircraft systems study
The effects of using advanced turboprop propulsion systems to reduce the fuel consumption and direct operating costs of cargo aircraft were studied, and the impact of these systems on aircraft noise and noise prints around a terminal area was determined. Parametric variations of aircraft and propeller characteristics were investigated to determine their effects on noiseprint areas, fuel consumption, and direct operating costs. From these results, three aircraft designs were selected and subjected to design refinements and sensitivity analyses. Three competitive turbofan aircraft were also defined from parametric studies to provide a basis for comparing the two types of propulsion
Turboprop Cargo Aircraft Systems study, phase 1
The effects of advanced propellers (propfan) on aircraft direct operating costs, fuel consumption, and noiseprints were determined. A comparison of three aircraft selected from the results with competitive turbofan aircraft shows that advanced turboprop aircraft offer these potential benefits, relative to advanced turbofan aircraft: 21 percent fuel saving, 26 percent higher fuel efficiency, 15 percent lower DOCs, and 25 percent shorter field lengths. Fuel consumption for the turboprop is nearly 40 percent less than for current commercial turbofan aircraft. Aircraft with both types of propulsion satisfy current federal noise regulations. Advanced turboprop aircraft have smaller noiseprints at 90 EPNdB than advanced turbofan aircraft, but large noiseprints at 70 and 80 EPNdB levels, which are usually suggested as quietness goals. Accelerated development of advanced turboprops is strongly recommended to permit early attainment of the potential fuel saving. Several areas of work are identified which may produce quieter turboprop aircraft
Very Luminous Carbon Stars in the Outer Disk of the Triangulum Spiral Galaxy
Stars with masses in the range from about 1.3 to 3.5 Mo pass through an
evolutionary stage where they become carbon stars. In this stage, which lasts a
few Myr, these stars are extremely luminous pulsating giants. They are so
luminous in the near-infrared that just a few of them can double the integrated
luminosity of intermediate-age (0.6 to 2 Gyr) Magellanic Cloud clusters at 2.2
microns. Astronomers routinely use such near-infrared observations to minimize
the effects of dust extinction, but it is precisely in this band that carbon
stars can contribute hugely. The actual contribution of carbon stars to the
outer disk light of evolving spiral galaxies has not previously been
morphologically investigated. Here we report new and very deep near-IR images
of the Triangulum spiral galaxy M33=NGC 598, delineating spectacular arcs of
carbon stars in its outer regions. It is these arcs which dominate the
near-infrared m=2 Fourier spectra of M33. We present near-infrared photometry
with the Hale 5-m reflector, and propose that the arcs are the signature of
accretion of low metallicity gas in the outer disk of M33.Comment: 4 pages, 4 figures. Revised version submitted to A&A Letter
A Doppler-Cancellation Technique for Determining the Altitude Dependence of Gravitational Red Shift in an Earth Satellite
A cancellation technique permits measurement of the frequency of a source moving relative to an observer without the obscuring effect of first-order Doppler shifts. The application of this method to a gravitational red shift experiment involving the use of an earth satellite containing a highly stable oscillator is described. The rapidity with which a measurement can be made permits the taking of data at various altitudes in a given elliptical orbit. Tropospheric and ionospheric effects upon the accuracy of results are estimated
Alexandrov spaces with integral current structure
We endow each closed, orientable Alexandrov space with an integral current of weight equal to 1, , in other words, we prove that is an integral current space with no boundary. Combining this result with a result of Li and Perales, we show that non-collapsing sequences of these spaces with uniform lower curvature and diameter bounds admit subsequences whose Gromov-Hausdorff and intrinsic flat limits agree
The bloodstream differentiation - division of Trypanosoma brucei studied using mitochondrial markers
In the bloodstream of its mammalian host, the African trypanosome Trypanosoma brucei undergoes a life cycle stage differentiation from a long, slender form to a short, stumpy form. This involves three known major events: exit from a proliferative cell cycle, morphological change and mitochondrial biogenesis. Previously, models have been proposed accounting for these events (Matthews & Gull 1994a). Refinement of, and discrimination between, these models has been hindered by a lack of stage-regulated antigens useful as markers at the single-cell level. We have now evaluated a variety of cytological markers and applied them to investigate the coordination of phenotypic differentiation and cell cycle arrest. Our studies have focused on the differential expression of the mitochondrial enzyme dihydrolipoamide dehydrogenase relative to the differentiation-division of bloodstream trypanosomes. The results implicate a temporal order of events: commitment, division, phenotypic differentiation
Seismicity trends and detachment fault structure at 13°N, Mid-Atlantic Ridge
At slow-spreading ridges, plate separation is commonly partly accommodated by slip on long-lived detachment faults, exposing upper mantle and lower crustal rocks on the seafloor. However, the mechanics of this process, the subsurface structure, and the interaction of these faults remain largely unknown. We report the results of a network of 56 ocean-bottom seismographs (OBSs), deployed in 2016 at the Mid-Atlantic Ridge near 13°N, that provided dense spatial coverage of two adjacent detachment faults and the intervening ridge axis. Although both detachments exhibited high levels of seismicity, they are separated by an ∼8-km-wide aseismic zone, indicating that they are mechanically decoupled. A linear band of seismic activity, possibly indicating magmatism, crosscuts the 13°30′N domed detachment surface, confirming previous evidence for fault abandonment. Farther south, where the 2016 OBS network spatially overlapped with a similar survey done in 2014, significant changes in the patterns of seismicity between these surveys are observed. These changes suggest that oceanic detachments undergo previously unobserved cycles of stress accumulation and release as plate spreading is accommodated.</p
- …