1,030 research outputs found
A cross sectional study of water quality from dental unit water lines in dental practices in the West of Scotland
OBJECTIVE: To determine the microbiological quality of water from dental units in a general practice setting and current practice for disinfection of units. DESIGN: A cross-sectional study of the water quality from 40 dental units in 39 general practices and a questionnaire of the disinfection protocols used in those practices. SETTING: NHS practices in primarydental care. SUBJECTS: Thirty-nine general practices from the West of Scotland. METHODS: Water samples were collected on two separate occasions from dental units and analysed for microbiological quality by the total viable count (TVC) method. Water specimens were collected from the triple syringe, high speed outlet, cup filler and surgery tap. Each participating practitioner was asked to complete a questionnaire. Results Microbial contamination was highest from the high speed outlet followed by the triple syringe and cup filler. On average, the TVC counts from the high speed water lines at 37 degrees C and for the high speed lines, triple syringe and cup filler at 22 degrees C were significantly higher than that from the control tap water specimens. The study included units from 11 different manufacturers with ages ranging from under one year to over eight years. The age of the dental unit analysed did not appear to influence the level of microbial contamination. Five of the practices surveyed used disinfectants to clean the dental units but these had no significant effect on the microbiological quality of the water. The majority of dental units (25 out of 40) were never flushed with water between patients. A number of different non-sterile irrigants were used for surgical procedures. CONCLUSION: The microbiological quality of water from dental units in general dental practice is poor compared with that from drinking water sources. Suitable sterile irrigants should be used for surgical procedures in dental practice. Further work is required for pragmatic decontamination regimens of dental unit water lines in a general dental practice setting
The Gondwana connections of northern Patagonia
A multidisciplinary study (U–Pb sensitive high-resolution ion microprobe geochronology, Hf and O isotopes in zircon, Sr and Nd isotopes in whole-rocks, as well as major and trace element geochemistry) has been carried out on granitoid samples from the area west of Valcheta, North Patagonian Massif, Argentina. These confirm the Cambrian age of the Tardugno Granodiorite (528 ± 4 Ma) and the Late Permian age of granites in the central part of the Yaminué complex (250 Ma). Together with petrological and structural information for the area, we consider a previously suggested idea that the Cambrian and Ordovician granites of northeastern Patagonia represent continuation of the Pampean and Famatinian orogenic belts of the Sierras Pampeanas, respectively. Our interpretation does not support the hypothesis that Patagonia was accreted in Late Palaeozoic times as a far-travelled terrane, originating in the Central Transantarctic Mountains, and the arguments for and against this idea are reviewed. A parautochthonous origin is preferred with no major ocean closure between the North Patagonian Massif and the Sierra de la Ventana fold belt.Centro de Investigaciones GeológicasConsejo Nacional de Investigaciones Científicas y Técnica
A history of Proterozoic terranes in southern South America: From Rodinia to Gondwana
The role played by Paleoproterozoic cratons in southern South America from the Mesoproterozoic to the Early Cambrian is reconsidered here. This period involved protracted continental amalgamation that led to formation of the supercontinent Rodinia, followed by Neoproterozoic continental break-up, with the consequent opening of Clymene and Iapetus oceans, and finally continental re-assembly as Gondwana through complex oblique collisions in the Late Neoproterozoic to Early Cambrian. The evidence for this is based mainly on a combination of precise U-Pb SHRMP dating and radiogenic isotope data for igneous and metamorphic rocks from a large area extending from the Rio de la Plata craton in the east to the Argentine Precordillera in the west and as far north as Arequipa in Peru. Our interpretation of the paleogeographical and geodynamic evolution invokes a hypothetical Paleoproterozoic block (MARA) embracing basement ultimately older than 1.7 Ga in the Western Sierras Pampeanas (Argentina), the Arequipa block (Peru), the Rio Apa block (Brazil), and probably also the Paraguaia block (Bolivia).Centro de Investigaciones Geológica
Size effects in the magnetic behaviour of TbAl_2 milled alloys
The study of the magnetic properties depending upon mechanical milling of the
ferromagnetic polycrystalline TbAl_2 material is reported. The Rietveld
analysis of the X-ray diffraction data reveals a decrease of the grain size
down to 14 nm and -0.15 % of variation of the lattice parameter, after 300
hours of milling time. Irreversibility in the zero field cooled - field cooled
(ZFC-FC) DC-susceptibility and clear peaks in the AC susceptibility between 5
and 300 K show that the long-range ferromagnetic structure is inhibited in
favour of a disordered spin arrangement below 45 K. This glassy behaviour is
also deduced from the variation of the irreversibility transition with the
field (H^{2/3}) and frequency. The magnetization process of the bulk TbAl_2 is
governed by domain wall thermal activation processes. By contrast, in the
milled samples, cluster-glass properties arise as a result of cooperative
interactions due to the substitutional disorder. The interactions are also
influenced by the nanograin structure of the milled alloys, showing a variation
of coercivity with the grain size, below the crossover between the multi- and
single-domain behaviours.Comment: 23 pages, 11 figures, to appear in J. Phys.: Condens. Ma
Systematic first-principles study of impurity hybridization in NiAl
We have performed a systematic first-principles computational study of the
effects of impurity atoms (boron, carbon, nitrogen, oxygen, silicon, phosporus,
and sulfur) on the orbital hybridization and bonding properties in the
intermetallic alloy NiAl using a full-potential linear muffin-tin orbital
method. The matrix elements in momentum space were used to calculate real-space
properties: onsite parameters, partial densities of states, and local charges.
In impurity atoms that are empirically known to be embrittler (N and O) we
found that the 2s orbital is bound to the impurity and therefore does not
participate in the covalent bonding. In contrast, the corresponding 2s orbital
is found to be delocalized in the cohesion enhancers (B and C). Each of these
impurity atoms is found to acquire a net negative local charge in NiAl
irrespective of whether they sit in the Ni or Al site. The embrittler therefore
reduces the total number of electrons available for covalent bonding by
removing some of the electrons from the neighboring Ni or Al atoms and
localizing them at the impurity site. We show that these correlations also hold
for silicon, phosporus, and sulfur.Comment: Revtex, 8 pages, 7 eps figures, to appear in Phys. Rev.
A deformed alkaline igneous rock–carbonatite complex from the Western Sierras Pampeanas, Argentina: Evidence for late Neoproterozoic opening of the Clymene Ocean?
A deformed ca. 570Ma syenite–carbonatite body is reported from a Grenville-age (1.0–1.2 Ga) terrane in the Sierra de Maz, one of theWestern Sierras Pampeanas of Argentina. This is the first recognition of such a rock assemblage in the basement of the Central Andes. The two main lithologies are coarse-grained syenite (often nepheline-bearing) and enclave-rich fine-grained foliated biotite–calcite carbonatite. Samples of carbonatite and syenite yield an imprecise whole rock Rb–Sr isochron age of 582±60Ma (MSWD= 1.8; Sri = 0.7029); SHRIMP U–Pb spot analysis of syenite zircons shows a total range of 206Pb–238Uages between 433 and 612 Ma, with a prominent peak at 560–580Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525±7Ma (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. 433 and 612 Ma, with a prominent peak at 560–580Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525±7Ma (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. Sri = 0.7029); SHRIMP U–Pb spot analysis of syenite zircons shows a total range of 206Pb–238Uages between 433 and 612 Ma, with a prominent peak at 560–580Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525±7Ma (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. 433 and 612 Ma, with a prominent peak at 560–580Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525±7Ma (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. ±60Ma (MSWD= 1.8; Sri = 0.7029); SHRIMP U–Pb spot analysis of syenite zircons shows a total range of 206Pb–238Uages between 433 and 612 Ma, with a prominent peak at 560–580Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525±7Ma (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. 433 and 612 Ma, with a prominent peak at 560–580Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525±7Ma (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. 206Pb–238Uages between 433 and 612 Ma, with a prominent peak at 560–580Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525±7Ma (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. ±7Ma (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. 570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust.Fil: Casquet, C.. Universidad Complutense de Madrid; EspañaFil: Pankhurst, R .J.. No especifíca;Fil: Galindo, C.. Universidad Complutense de Madrid; EspañaFil: Rapela, Carlos Washington. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Fanning, C. M.. No especifíca;Fil: Baldo, Edgardo Gaspar Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Dahlquist, Juan Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: González Casado, J. M.. Universidad Autónoma de Madrid; EspañaFil: Colombo, Fernando. Consejo N
The Arequipa Massif of Peru: new SHRIMP and isotope constraints on a Paleoproterozoic inlier in the Grenvillian orogen
The enigmatic Arequipa Massif of southwestern Peru is an outcrop of Andean basement that underwent Grenville-age metamorphism, and as such it is important for the better constraint of Laurentia–Amazonia ties in Rodinia reconstruction models. U–Pb SHRIMP zircon dating has yielded new evidence on the evolution of the Massif between Middle Paleoproterozoic and Early Paleozoic. The oldest rock-forming events occurred in major orogenic events between ca. 1.79 and 2.1 Ga (Orosirian to Rhyacian), involving early magmatism (1.89–2.1 Ga, presumably emplaced through partly Archaean continental crust), sedimentation of a thick sequence of terrigenous sediments, UHT metamorphism at ca. 1.87 Ga, and late felsic magmatism at ca. 1.79 Ga. The Atico sedimentary basin developed in the Late-Mesoproterozoic and detrital zircons were fed from a source area similar to the high-grade Paleoproterozoic basement, but also from an unknown source that provided Mesoproterozoic zircons of 1200–1600 Ma. The Grenville-age metamorphism was of low-P type; it both reworked the Paleoproterozoic rocks and also affected the Atico sedimentary rocks. Metamorphism was diachronous: ca. 1040 Ma in the Quilca and Camana areas and in the San Juan Marcona domain, 940 ± 6 Ma in the Mollendo area, and between 1000 and 850 Ma in the Atico domain. These metamorphic domains are probably tectonically juxtaposed. Comparison with coeval Grenvillian processes in Laurentia and in southern Amazonia raises the possibility that Grenvillian metamorphism in the Arequipa Massif resulted from extension and not from collision. The Arequipa Massif experienced Ordovician–Silurian magmatism at ca. 465 Ma, including anorthosites formerly considered to be Grenvillian, and high-T metamorphism deep within the magmatic arc. Focused retrogression along shear zones or unconformities took place between 430 and 440 Ma.Centro de Investigaciones Geológica
Polyclonal and Monoclonal Antibodies for Treating Acute Rejection Episodes in Kidney Transplant Recipients
Background: Registry data shows that between 15-35% kidney recipients will undergo treatment for at least one episode of acute rejection within the first post transplant year. Treatment options include pulsed steroid therapy, the use of an antibody preparation, the alteration of background immunosuppression, or combinations of these options. In 2002, in the US, 61.4% patients with an acute rejection episode received steroids, 20.4% received an antibody preparation and 18.2% received both. Objectives: To determine the benefits and harms of mono- or polyclonal antibodies (Ab) used to treat acute rejection in kidney transplant recipients. Search strategy: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (in The Cochrane Library, issue 2, 2005), MEDLINE (1966-June 2005), EMBASE (1980-June 2005), and the specialised register of the Cochrane Renal Group (June 2005). Selection criteria: Randomised controlled trials (RCTs) in all languages comparing all mono- and polyclonal antibody preparations, given in combination with any other immunosuppressive agents, for the treatment of acute graft rejection, when compared to any other treatment for acute rejection. Data collection and analysis: Two reviewers independently assessed trials for eligibility and quality, and extracted data. Results are expressed as relative risk (RR) with 95% confidence intervals (CI). Main results: Twenty one trials (49 reports, 1387 patients) were identified. Trials were generally small, incompletely reported, especially for potential harms, and did not define outcome measures adequately. Fourteen trials (965 patients) compared therapies for first rejection episodes. Ab was better than steroid in reversing rejection (RR 0.57, 95% CI 0.38 to 0.87) and preventing graft loss (death censored RR 0.74, CI 0.58 to 0.95) but there was no difference in preventing subsequent rejection or death at one year. Seven trials (422 patients) investigated Ab treatment of steroid-resistant rejection. There was no benefit of muromonab-CD3 over ATG or ALG in either reversing rejection, preventing subsequent rejection, preventing graft loss or death. Authors' conclusions: In reversing first rejection, any antibody is better than steroid and also prevents graft loss, but subsequent rejection and patient survival are not significantly different. In reversing steroid-resistant rejection the effects of different antibodies are also not significantly different. Given the clinical problem caused by acute rejection, data are very sparse, and clinically important differences in outcomes between widely used interventions have not been excluded. Standardised reproducible outcome criteria are needed
Mafic rocks of the Ordovician Famatinian magmatic arc (NW Argentina): New insights into the mantle contribution
We studied the petrogenesis of mafic igneous rocks in the Famatinian arc in the western Sierra Famatina (NW Argentina), an Early Ordovician middle-crustal section in the proto-Andean margin of Gondwana. Mafic rock types consist of amphibolite, metagabbro, and gabbro, as well as pod- and dike-like bodies of gabbro to diorite composition. Field relations together with geochemical and isotopic data for the mafic rocks of the western Sierra de Famatina (at 29°S) define two contrasting suites, which can be correlated with similar assemblages noted in other parts of the orogen. Amphibolite, metagabbro, and gabbro bodies are mostly the oldest intrusive rocks (older than 480 Ma), with the host tonalite and post-tonalite mafic dikes being slightly younger. The older mafic suite is tholeiitic to calc-alkaline and isotopically evolved, except for most of the amphibolite samples. The younger suite is calc-alkaline, typically displaying subduction-related geochemical signatures, and it is isotopically more juvenile. Whole-rock chemical composition and isotopic analyses are compatible with a progressive mixing of different isotopic reservoirs. Pyroxenite (±garnet) was likely the dominant source of the older gabbroic magmas, whereas peridotite dominated in the source of the younger suite, implying that the mafic magma experienced a progressive shift toward more juvenile compositions though time (over 20 m.y.). Pyroxenitederived melts could have been generated by lithospheric foundering followed by upwelling of primitive melts by adiabatic decompression of mantle wedge peridotite.Fil: Alasino, Pablo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de Catamarca. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de la Rioja. - Secretaria de Industria y Minería. Servicio Geológico Minero Argentino. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Provincia de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja; ArgentinaFil: Casquet, C.. Consejo Superior de Investigaciones Científica. Instituto de Geociencias; EspañaFil: Pankhurst, R. J.. British Geological Survey; Reino UnidoFil: Rapela, Carlos Washington. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Dahlquist, Juan Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Galindo, C.. Consejo Superior de Investigaciones Científica. Instituto de Geociencias; EspañaFil: Larrovere, Mariano Alexis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de Catamarca. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de la Rioja. - Secretaria de Industria y Minería. Servicio Geológico Minero Argentino. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Provincia de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja; ArgentinaFil: Recio, C.. Universidad de Salamanca; EspañaFil: Paterson, S.R.. University of Southern California; Estados UnidosFil: Colombo, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Baldo, Edgardo Gaspar Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentin
- …