4,691 research outputs found

    Finite size effects and localization properties of disordered quantum wires with chiral symmetry

    Full text link
    Finite size effects in the localization properties of disordered quantum wires are analyzed through conductance calculations. Disorder is induced by introducing vacancies at random positions in the wire and thus preserving the chiral symmetry. For quasi one-dimensional geometries and low concentration of vacancies, an exponential decay of the mean conductance with the wire length is obtained even at the center of the energy band. For wide wires, finite size effects cause the conductance to decay following a non-pure exponential law. We propose an analytical formula for the mean conductance that reproduces accurately the numerical data for both geometries. However, when the concentration of vacancies increases above a critical value, a transition towards the suppression of the conductance occurs. This is a signature of the presence of ultra-localized states trapped in finite regions of the sample.Comment: 5 figures, revtex

    Theory of the spin-torque-driven ferromagnetic resonance in a ferromagnet/normal-metal/ferromagnet structure

    Full text link
    We present a theoretical analysis of current driven ferromagnetic resonance in a ferromagnet/normal-metal/ferromagnet tri-layer. This method of driving ferromagnetic resonance was recently realized experimentally by Tulapurkar et al. [Nature 438, 339 (2005)] and Sankey et al. [Phys. Rev. Lett. 96, 227601 (2006)]. The precessing magnetization rectifies the alternating current applied to drive the ferromagnetic resonance and leads to the generation of a dc voltage. Our analysis shows that a second mechanism to generate a dc voltage, rectification of spin currents emitted by the precessing magnetization, has a contribution to the dc voltage that is of approximately equal size for the thin ferromagnetic films used in the experiment.Comment: 6 pages, 1 figure, final version. Changed title, updated references, added discussions in section I

    Intensity distribution of scalar waves propagating in random media

    Full text link
    Transmission of the scalar field through the random medium, represented by the system of randomly distributed dielectric cylinders is calculated numerically. System is mapped to the problem of electronic transport in disordered two-dimensional systems. Universality of the statistical distribution of transmission parameters is analyzed in the metallic and in the localized regimes.In the metallic regime the universality of the transmission statistics in all transparent channels is observed. In the band gaps, we distinguish the disorder induced (Anderson) localization from the tunneling through the system due to the gap in the density of states. We show also that absorption causes rapid decrease of the mean conductance, but, contrary to the localized regime, the conductance is self-averaged with a Gaussian distribution

    Impurity-assisted Andreev reflection at a spin-active half-metal-superconductor interface

    Get PDF
    The Andreev reflection amplitude at a clean interface between a half-metallic ferromagnet (H) and a superconductor (S) for which the half metal's magnetization has a gradient perpendicular to the interface is proportional to the excitation energy Δ\varepsilon and vanishes at Δ=0\varepsilon=0 [B\'{e}ri {\em et al.}, Phys.\ Rev.\ B {\bf 79}, 024517 (2009)]. Here we show that the presence of impurities at or in the immediate vicinity of the HS interface leads to a finite Andreev reflection amplitude at Δ=0\varepsilon=0. This impurity-assisted Andreev reflection dominates the low-bias conductance of a HS junction and the Josephson current of an SHS junction in the long-junction limit.Comment: 12 pages, 2 figure

    The risk linked to ionizing radiation: an alternative epidemiologic approach.

    Get PDF
    Radioprotection norms have been based on risk models that have evolved over time. These models show relationships between exposure and observed effects. There is a high level of uncertainty regarding lower doses. Recommendations have been based on the conservative hypothesis of a linear relationship without threshold value. This relationship is still debated, and the diverse observations do not allow any definitive conclusion. Available data are contradictory, and various interpretations can be made. Here we review an alternative approach for defining causation and reconciling apparently contradictory conclusions. This alternative epidemiologic approach is based on causal groups: Each component of a causal group is necessary but not sufficient for causality. Many groups may be involved in causality. Thus, ionizing radiation may be a component of one or several causal groups. This formalization reconciles heterogeneous observations but implies searching for the interactions between components, mostly between critical components of a causal profile, and, for instance, the reasons why specific human groups would not show any effect despite exposure, when an effect would be expected

    Andreev reflection at half-metal-superconductor interfaces with non-uniform magnetization

    Full text link
    Andreev reflection at the interface between a half-metallic ferromagnet and a spin-singlet superconductor is possible only if it is accompanied by a spin flip. Here we calculate the Andreev reflection amplitudes for the case that the spin flip originates from a spatially non-uniform magnetization direction in the half metal. We calculate both the microscopic Andreev reflection amplitude for a single reflection event and an effective Andreev reflection amplitude describing the effect of multiple Andreev reflections in a ballistic thin film geometry. It is shown that the angle and energy dependence of the Andreev reflection amplitude strongly depends on the orientation of the gradient of the magnetization with respect to the interface. Establishing a connection between the scattering approach employed here and earlier work that employs the quasiclassical formalism, we connect the symmetry properties of the Andreev reflection amplitudes to the symmetry properties of the anomalous Green function in the half metal.Comment: 13 pages, 4 figure

    Photonic excess noise and wave localization

    Get PDF
    This is a theory for the effect of localization on the super-Poissonian noise of radiation propagating through an absorbing disordered waveguide. Localization suppresses both the mean photon current I and the noise power P, but the Fano factor P/I is found to remain unaffected. For strong absorption the Fano factor has the universal value 1+3f/2 (with f the Bose-Einstein function), regardless of whether the waveguide is long or short compared to the localization length.Comment: 3 pages including 3 figure

    Conductance Distribution of a Quantum Dot with Non-Ideal Single-Channel Leads

    Get PDF
    We have computed the probability distribution of the conductance of a ballistic and chaotic cavity which is connected to two electron reservoirs by leads with a single propagating mode, for arbitrary values of the transmission probability Gamma of the mode, and for all three values of the symmetry index beta. The theory bridges the gap between previous work on ballistic leads (Gamma = 1) and on tunneling point contacts (Gamma << 1). We find that the beta-dependence of the distribution changes drastically in the crossover from the tunneling to the ballistic regime. This is relevant for experiments, which are usually in this crossover regime. ***Submitted to Physical Review B.***Comment: 7 pages, REVTeX-3.0, 4 postscript figures appended as self-extracting archive, INLO-PUB-940607

    Voltage-probe and imaginary potential models for dephasing in a chaotic quantum dot

    Full text link
    We compare two widely used models for dephasing in a chaotic quantum dot: The introduction of a fictitious voltage probe into the scattering matrix and the addition of an imaginary potential to the Hamiltonian. We identify the limit in which the two models are equivalent and compute the distribution of the conductance in that limit. Our analysis explains why previous treatments of dephasing gave different results. The distribution remains non-Gaussian for strong dephasing if the coupling of the quantum dot to the electron reservoirs is via ballistic single-mode point contacts, but becomes Gaussian if the coupling is via tunneling contacts.Comment: 9 pages, RevTeX, 6 figures. Mistake in Eq. (35) correcte

    Distributions of the Conductance and its Parametric Derivatives in Quantum Dots

    Full text link
    Full distributions of conductance through quantum dots with single-mode leads are reported for both broken and unbroken time-reversal symmetry. Distributions are nongaussian and agree well with random matrix theory calculations that account for a finite dephasing time, τϕ\tau_\phi, once broadening due to finite temperature TT is also included. Full distributions of the derivatives of conductance with respect to gate voltage P(dg/dVg)P(dg/dV_g) are also investigated.Comment: 4 pages (REVTeX), 4 eps figure
    • 

    corecore