2,282 research outputs found
Fragility and compressibility at the glass transition
Isothermal compressibilities and Brillouin sound velocities from the
literature allow to separate the compressibility at the glass transition into a
high-frequency vibrational and a low-frequency relaxational part. Their ratio
shows the linear fragility relation discovered by x-ray Brillouin scattering
[1], though the data bend away from the line at higher fragilities. Using the
concept of constrained degrees of freedom, one can show that the vibrational
part follows the fragility-independent Lindemann criterion; the fragility
dependence seems to stem from the relaxational part. The physical meaning of
this finding is discussed. [1] T. Scopigno, G. Ruocco, F. Sette and G. Monaco,
Science 302, 849 (2003)Comment: 4 pages, 2 figures, 2 tables, 33 references. Slightly changed after
refereein
The viscous slowing down of supercooled liquids as a temperature-controlled superArrhenius activated process: a description in terms of frustration-limited domains
We propose that the salient feature to be explained about the glass
transition of supercooled liquids is the temperature-controlled superArrhenius
activated nature of the viscous slowing down, more strikingly seen in
weakly-bonded, fragile systems. In the light of this observation, the relevance
of simple models of spherically interacting particles and that of models based
on free-volume congested dynamics are questioned. Finally, we discuss how the
main aspects of the phenomenology of supercooled liquids, including the
crossover from Arrhenius to superArrhenius activated behavior and the
heterogeneous character of the relaxation, can be described by an
approach based on frustration-limited domains.Comment: 13 pages, 4 figures, accepted in J. Phys.: Condensed Matter,
proceedings of the Trieste workshop on "Unifying Concepts in Glass Physics
Factors Community College Faculty Consider Important to Academic Leadership
Although many of the pressures leaders face come from external sources, the expertise of the faculty should not be ignored when preparing community college leaders. The current study analyzed survey data from community college faculty across the state of Kentucky to determine which attributes they considered important to academic leadership. The faculty members who responded to an online survey regarded most highly factors pertaining to communication, character, decision-making, teamwork, work ethic, and personal relationships
Microscopic theory of network glasses
A molecular theory of the glass transition of network forming liquids is
developed using a combination of self-consistent phonon and liquid state
approaches. Both the dynamical transition and the entropy crisis characteristic
of random first order transitions are mapped out as a function of the degree of
bonding and the density. Using a scaling relation for a soft-core model to
crudely translate the densities into temperatures, the theory predicts that the
ratio of the dynamical transition temperature to the laboratory transition
temperature rises as the degree of bonding increases, while the Kauzmann
temperature falls relative to the laboratory transition. These results indicate
why highly coordinated liquids should be "strong" while van der Waals liquids
without coordination are "fragile".Comment: slightly revised version that has been accepted for publication in
Phys. Rev. Let
Subdiffusion and cage effect in a sheared granular material
We investigate experimentally the diffusion properties of a bidimensional
bidisperse dry granular material under quasistatic cyclic shear.The comparison
of these properties with results obtained both in computer simulations of hard
spheres systems and Lenard-Jones liquids and experiments on colloidal systems
near the glass transition demonstrates a strong analogy between the behaviour
of granular matter and these systems. More specifically, we study in detail the
cage dynamics responsible for the subdiffusion in the slow relaxation regime,
and obtain the values of relevant time and length scales.Comment: 4 pages, 6 figures, submitted to PR
Two-Gaussian excitations model for the glass transition
We develop a modified "two-state" model with Gaussian widths for the site
energies of both ground and excited states, consistent with expectations for a
disordered system. The thermodynamic properties of the system are analyzed in
configuration space and found to bridge the gap between simple two state models
("logarithmic" model in configuration space) and the random energy model
("Gaussian" model in configuration space). The Kauzmann singularity given by
the random energy model remains for very fragile liquids but is suppressed or
eliminated for stronger liquids. The sharp form of constant volume heat
capacity found by recent simulations for binary mixed Lennard Jones and soft
sphere systems is reproduced by the model, as is the excess entropy and heat
capacity of a variety of laboratory systems, strong and fragile. The ideal
glass in all cases has a narrow Gaussian, almost invariant among molecular and
atomic glassformers, while the excited state Gaussian depends on the system and
its width plays a role in the thermodynamic fragility. The model predicts the
existence of first-order phase transition for fragile liquids.Comment: 12 pages, 12 figure
Molecular structural order and anomalies in liquid silica
The present investigation examines the relationship between structural order,
diffusivity anomalies, and density anomalies in liquid silica by means of
molecular dynamics simulations. We use previously defined orientational and
translational order parameters to quantify local structural order in atomic
configurations. Extensive simulations are performed at different state points
to measure structural order, diffusivity, and thermodynamic properties. It is
found that silica shares many trends recently reported for water [J. R.
Errington and P. G. Debenedetti, Nature 409, 318 (2001)]. At intermediate
densities, the distribution of local orientational order is bimodal. At fixed
temperature, order parameter extrema occur upon compression: a maximum in
orientational order followed by a minimum in translational order. Unlike water,
however, silica's translational order parameter minimum is broad, and there is
no range of thermodynamic conditions where both parameters are strictly
coupled. Furthermore, the temperature-density regime where both structural
order parameters decrease upon isothermal compression (the structurally
anomalous regime) does not encompass the region of diffusivity anomalies, as
was the case for water.Comment: 30 pages, 8 figure
Relation between positional specific heat and static relaxation length: Application to supercooled liquids
A general identification of the {\em positional specific heat} as the
thermodynamic response function associated with the {\em static relaxation
length} is proposed, and a phenomenological description for the thermal
dependence of the static relaxation length in supercooled liquids is presented.
Accordingly, through a phenomenological determination of positional specific
heat of supercooled liquids, we arrive at the thermal variation of the static
relaxation length , which is found to vary in accordance with in the quasi-equilibrium supercooled temperature regime, where
is the Vogel-Fulcher temperature and exponent equals unity. This
result to a certain degree agrees with that obtained from mean field theory of
random-first-order transition, which suggests a power law temperature variation
for with an apparent divergence at . However, the phenomenological
exponent , is higher than the corresponding mean field estimate
(becoming exact in infinite dimensions), and in perfect agreement with the
relaxation length exponent as obtained from the numerical simulations of the
same models of structural glass in three spatial dimensions.Comment: Revised version, 7 pages, no figures, submitted to IOP Publishin
Effects of compression on the vibrational modes of marginally jammed solids
Glasses have a large excess of low-frequency vibrational modes in comparison
with most crystalline solids. We show that such a feature is a necessary
consequence of the weak connectivity of the solid, and that the frequency of
modes in excess is very sensitive to the pressure. We analyze in particular two
systems whose density D(w) of vibrational modes of angular frequency w display
scaling behaviors with the packing fraction: (i) simulations of jammed packings
of particles interacting through finite-range, purely repulsive potentials,
comprised of weakly compressed spheres at zero temperature and (ii) a system
with the same network of contacts, but where the force between any particles in
contact (and therefore the total pressure) is set to zero. We account in the
two cases for the observed a) convergence of D(w) toward a non-zero constant as
w goes to 0, b) appearance of a low-frequency cutoff w*, and c) power-law
increase of w* with compression. Differences between these two systems occur at
lower frequency. The density of states of the modified system displays an
abrupt plateau that appears at w*, below which we expect the system to behave
as a normal, continuous, elastic body. In the unmodified system, the pressure
lowers the frequency of the modes in excess. The requirement of stability
despite the destabilizing effect of pressure yields a lower bound on the number
of extra contact per particle dz: dz > p^(1/2), which generalizes the Maxwell
criterion for rigidity when pressure is present. This scaling behavior is
observed in the simulations. We finally discuss how the cooling procedure can
affect the microscopic structure and the density of normal modes.Comment: 13 pages, 8 figure
Forced motion of a probe particle near the colloidal glass transition
We use confocal microscopy to study the motion of a magnetic bead in a dense
colloidal suspension, near the colloidal glass transition volume fraction
. For dense liquid-like samples near , below a threshold force
the magnetic bead exhibits only localized caged motion. Above this force, the
bead is pulled with a fluctuating velocity. The relationship between force and
velocity becomes increasingly nonlinear as is approached. The
threshold force and nonlinear drag force vary strongly with the volume
fraction, while the velocity fluctuations do not change near the transition.Comment: 7 pages, 4 figures revised version, accepted for publication in
Europhysics Letter
- …