52 research outputs found

    Experience-Dependent Changes in Excitatory and Inhibitory Receptor Subunit Expression in Visual Cortex

    Get PDF
    Experience-dependent development of visual cortex depends on the balance between excitatory and inhibitory activity. This activity is regulated by key excitatory (NMDA, AMPA) and inhibitory (GABAA) receptors. The composition of these receptors changes developmentally, affecting the excitatory–inhibitory (E/I) balance and synaptic plasticity. Until now, it has been unclear how abnormal visual experience affects this balance. To examine this question, we measured developmental changes in excitatory and inhibitory receptor subunits in visual cortex following normal visual experience and monocular deprivation. We used Western blot analysis to quantify expression of excitatory (NR1, NR2A, NR2B, GluR2) and inhibitory (GABAAα1, GABAAα3) receptor subunits. Monocular deprivation promoted a complex pattern of changes in receptor subunit expression that varied with age and was most severe in the region of visual cortex representing the central visual field. To characterize the multidimensional pattern of experience-dependent change in these synaptic mechanisms, we applied a neuroinformatics approach using principal component analysis. We found that monocular deprivation (i) causes a large portion of the normal developmental trajectory to be bypassed, (ii) shifts the E/I balance in favor of more inhibition, and (iii) accelerates the maturation of receptor subunits. Taken together, these results show that monocularly deprived animals have an abnormal balance of the synaptic machinery needed for functional maturation of cortical circuits and for developmental plasticity. This raises the possibility that interventions intended to treat amblyopia may need to address multiple synaptic mechanisms to produce optimal recovery

    Factors associated with bat mortality at wind energy facilities in the United States

    Get PDF
    Hundreds of thousands of bats are killed annually by colliding with wind turbines in the U.S., yet little is known about factors causing variation in mortality across wind energy facilities. We conducted a quantitative synthesis of bat collision mortality with wind turbines by reviewing 218 North American studies representing 100 wind energy facilities. This data set, the largest compiled for bats to date, provides further evidence that collision mortality is greatest for migratory tree-roosting species (Hoary Bat [Lasiurus cinereus], Eastern Red Bat [Lasiurus borealis], Silver-haired Bat [Lasionycteris noctivagans]) and from July to October. Based on 40 U.S. studies meeting inclusion criteria and analyzed under a common statistical framework to account for methodological variation, we found support for an inverse relationship between bat mortality and percent grassland cover surrounding wind energy facilities. At a national scale, grassland cover may best reflect openness of the landscape, a factor generally associated with reduced activity and abundance of tree-roosting species that may also reduce turbine collisions. Further representative sampling of wind energy facilities is required to validate this pattern. Ecologically informed placement of wind energy facilities involves multiple considerations, including not only factors associated with bat mortality, but also factors associated with bird collision mortality, indirect habitat-related impacts to all species, and overall ecosystem impacts

    Data from: Natural selection favors a larger eye in response to increased competition in natural populations of a vertebrate

    No full text
    1.Eye size varies notably across taxa. Much work suggests that this variation is driven by contrasting ecological selective pressures. However, evaluations of the relationship between ecological factors and shifts in eye size have largely occurred at the macroevolutionary scale. Experimental tests in nature are conspicuously absent. 2.Trinidadian killifish, Rivulus hartii, are found across fish communities that differ in predation intensity. We recently showed that increased predation is associated with the evolution of a smaller eye. Here, we test how divergent predatory regimes alter the trajectory of eye size evolution using comparative mark‐recapture experiments in multiple streams. 3.We found that increases in eye size are associated with enhanced survival, irrespective of predation intensity. More importantly, eye size is associated with enhanced growth in communities that lack predators, while this trend is absent when predators are present. 4.Such results argue that increased competition for food in sites that lack predators is the key driver of eye size evolution

    Data from: The evolution of vertebrate eye size across an environmental gradient: phenotype does not predict genotype in a Trinidadian killifish

    No full text
    Vertebrates exhibit substantial variation in eye size. Eye size correlates positively with visual capacity and behaviors that enhance fitness, such as predator avoidance. This foreshadows a connection between predation and eye size evolution. Yet, the conditions that favor evolutionary shifts in eye size, besides the well-known role for light availability, are unclear. We tested the influence of predation on the evolution of eye size in Trinidadian killifish, Rivulus hartii. Rivulus are located across a series of communities where they coexist with visually oriented piscivores (‘high predation’ sites), and no predators (‘Rivulus-only’ sites). Wild-caught Rivulus from high predation sites generally exhibited a smaller relative eye size than communities that lack predators. Yet, such differences were inconsistent across rivers. Second-generation common garden reared fish revealed repeatable decreases in eye size in Rivulus from high predation sites. We performed additional experiments that tested the importance of light and resources on eye size evolution. Sites that differ in light or resource availability did not differ in eye size. Our results argue that differences in predator-induced mortality underlie genetically-based shifts in vertebrate eye size. We discuss the drivers of eye size evolution in light of the nonparallel trends between the phenotypic and common garden results

    Data from: Predator-driven brain size evolution in natural populations of Trinidadian killifish (Rivulus hartii)

    No full text
    Vertebrates exhibit extensive variation in relative brain size. It has long been assumed that this variation is the product of ecologically driven natural selection. Yet, despite more than 100 years of research, the ecological conditions that select for changes in brain size are unclear. Recent laboratory selection experiments showed that selection for larger brains is associated with increased survival in risky environments. Such results lead to the prediction that increased predation should favour increased brain size. Work on natural populations, however, foreshadows the opposite trajectory of evolution; increased predation favours increased boldness, slower learning, and may thereby select for a smaller brain. We tested the influence of predator-induced mortality on brain size evolution by quantifying brain size variation in a Trinidadian killifish, Rivulus hartii, from communities that differ in predation intensity. We observed strong genetic differences in male (but not female) brain size between fish communities; second generation laboratory-reared males from sites with predators exhibited smaller brains than Rivulus from sites in which they are the only fish present. Such trends oppose the results of recent laboratory selection experiments and are not explained by trade-offs with other components of fitness. Our results suggest that increased male brain size is favoured in less risky environments because of the fitness benefits associated with faster rates of learning and problem-solving behaviour
    corecore