1,025 research outputs found
Metastasizing placental site trophoblastic tumor: Immunohistochemical and DNA analysis 2 case reports and a review of the literature
Placental-site trophoblastic tumor (PSTT) is a rare form of gestational trophoblastic neoplasia. The clinical behaviour of PSTT is usually benign, but sometimes it can be highly malignant with late recurrence and metastasis. We describe two cases of PSTT with pulmonary metastasis in patients aged 35 and 29 years respectively. The mitotic rate was elevated to 9 and 13 mitotic figures per 10 high-power fields respectively. Immunohistochemical staining showed a predominance of human placental lactogen (hPL) positive cells when compared with human chorionic gonadotropin (hCG) reactive cells in one case, and a reverse pattern in the other one. DNA measurement in one case showed an aneuploid tumor with a tetraploid DNA peak. The clinical behaviour of PSTT remains unpredictable, and there are no reliable means of predicting clinical outcom
Throughput Performance Evaluation of Multiservice Multirate OCDMA in Flexible Networks
\u3cp\u3eIn this paper, new analytical formalisms to evaluate the packet throughput of multiservice multirate slotted ALOHA optical code-division multiple-access (OCDMA) networks are proposed. The proposed formalisms can be successfully applied to 1-D and 2-D OCDMA networks with any number of user classes in the system. The bit error rate (BER) and packet correct probability expressions are derived, considering the multiple-access interference as binomially distributed. Packet throughput expressions, on the other hand, are derived considering Poisson, binomial, and Markov chain approaches for the composite packet arrivals distributions, with the latter defined as benchmark. A throughput performance evaluation is carried out for two distinct user code sequences separately, namely, 1-D and 2-D multiweight multilength optical orthogonal code (MWML-OOC). Numerical results show that the Poisson approach underestimates the throughput performance in unacceptable levels and incorrectly predicts the number of successfully received packets for most offered load values even in favorable conditions, such as for the 2-D MWML-OOC OCDMA network with a considerably large number of simultaneous users. On the other hand, the binomial approach proved to be more straightforward, computationally more efficient, and just as accurate as the Markov chain approach.\u3c/p\u3
Photonic Intermediate Structures for Perovskite/c-Silicon Four Terminal Tandem Solar Cells
Tandem perovskite/silicon devices are promising candidates for highly efficient and low-cost solar cells. Such tandem solar cells, however, require careful photon management for optimum performance, which can be achieved with intermediate photonic structures. Here, we identify the ideal requirements for such intermediate structures in perovskite/silicon tandem cells. Counter-intuitively, we find that the reflectance in the perovskite absorption window, i.e., below approx. 800 nm wavelength, does not have a strong impact on the tandem performance. Instead, the main function of the intermediate structure is to act as an optical impedance matching layer at the perovskite–silicon interface. This insight affords the design of simple and tolerant photonic structures that can obtain efficiencies surpassing 30%, assuming a passivated emitter, rear locally diffused (PERL) bottom cell and realistic perovskite top cell, by optical impedance matching alone
Spatial resolution effect of light coupling structures
This research project was founded by the National Council for Scientific and Technological Development (CNPq) of Brazil (302397/2014-0), by the National Natural Science Foundation of China (11204386, 11411130117, 11334015), by the Open research project of the State Key Laboratory of Optoelectronic Materials and Technologies, Sun-Yat Sen University of China (OEMT-2015-KF-12, OEMT-2015-KF-13) and by EPSRC of U.K. under grant EP/J01771X/1 (Structured Light). Kezheng Li is also supported by the aboard exchange scholar and international doctoral cooperative project of Sun Yat-sen University.The coupling of light between free space and thin film semiconductors is an essential requirement of modern optoelectronic technology. For monochromatic and single mode devices, high performance grating couplers have been developed that are well understood. For broadband and multimode devices, however, more complex structures, here referred to as "coupling surfaces", are required, which are often difficult to realise technologically. We identify general design rules based on the Fourier properties of the coupling surface and show how they can be used to determine the spatial resolution required for the coupler's fabrication. To our knowledge, this question has not been previously addressed, but it is important for the understanding of diffractive nanostructures and their technological realisation. We exemplify our insights with solar cells and UV photodetectors, where high-performance nanostructures that can be realised cost-effectively are essential.Publisher PDFPeer reviewe
Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation
\u3cp\u3eIn this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating the average bit error rate (ABER) performance are also proposed. These formalisms, based on the spatially correlated gamma-gamma statistical model, are derived considering three distinct scenarios, namely, uncorrelated, totally correlated, and partially correlated channels. Numerical results show that users can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber infrastructure.\u3c/p\u3
Directed avalanche processes with underlying interface dynamics
We describe a directed avalanche model; a slowly unloading sandbox driven by
lowering a retaining wall. The directness of the dynamics allows us to
interpret the stable sand surfaces as world sheets of fluctuating interfaces in
one lower dimension. In our specific case, the interface growth dynamics
belongs to the Kardar-Parisi-Zhang (KPZ) universality class. We formulate
relations between the critical exponents of the various avalanche distributions
and those of the roughness of the growing interface. The nonlinear nature of
the underlying KPZ dynamics provides a nontrivial test of such generic exponent
relations. The numerical values of the avalanche exponents are close to the
conventional KPZ values, but differ sufficiently to warrant a detailed study of
whether avalanche correlated Monte Carlo sampling changes the scaling exponents
of KPZ interfaces. We demonstrate that the exponents remain unchanged, but that
the traces left on the surface by previous avalanches give rise to unusually
strong finite-size corrections to scaling. This type of slow convergence seems
intrinsic to avalanche dynamics.Comment: 13 pages, 13 figure
Energy constrained sandpile models
We study two driven dynamical systems with conserved energy. The two automata
contain the basic dynamical rules of the Bak, Tang and Wiesenfeld sandpile
model. In addition a global constraint on the energy contained in the lattice
is imposed. In the limit of an infinitely slow driving of the system, the
conserved energy becomes the only parameter governing the dynamical
behavior of the system. Both models show scale free behavior at a critical
value of the fixed energy. The scaling with respect to the relevant
scaling field points out that the developing of critical correlations is in a
different universality class than self-organized critical sandpiles. Despite
this difference, the activity (avalanche) probability distributions appear to
coincide with the one of the standard self-organized critical sandpile.Comment: 4 pages including 3 figure
Generic Sandpile Models Have Directed Percolation Exponents
We study sandpile models with stochastic toppling rules and having sticky
grains so that with a non-zero probability no toppling occurs, even if the
local height of pile exceeds the threshold value. Dissipation is introduced by
adding a small probability of particle loss at each toppling. Generically, for
models with a preferred direction, the avalanche exponents are those of
critical directed percolation clusters. For undirected models, avalanche
exponents are those of directed percolation clusters in one higher dimension.Comment: 4 pages, 4 figures, minor change
Dynamically Driven Renormalization Group Applied to Sandpile Models
The general framework for the renormalization group analysis of
self-organized critical sandpile models is formulated. The usual real space
renormalization scheme for lattice models when applied to nonequilibrium
dynamical models must be supplemented by feedback relations coming from the
stationarity conditions. On the basis of these ideas the Dynamically Driven
Renormalization Group is applied to describe the boundary and bulk critical
behavior of sandpile models. A detailed description of the branching nature of
sandpile avalanches is given in terms of the generating functions of the
underlying branching process.Comment: 18 RevTeX pages, 5 figure
- …