2,366 research outputs found

    Crossover from Luttinger liquid to Coulomb blockade regime in carbon nanotubes

    Full text link
    We develop a theoretical approach to the low-energy properties of 1D electron systems aimed to encompass the mixed features of Luttinger liquid and Coulomb blockade behavior observed in the crossover between the two regimes. For this aim we extend the Luttinger liquid description by incorporating the effects of a discrete single-particle spectrum. The intermediate regime is characterized by a power-law behavior of the conductance, but with an exponent oscillating with the gate voltage, in agreement with recent experimental observations. Our construction also accounts naturally for the existence of a crossover in the zero-bias conductance, mediating between two temperature ranges where the power-law behavior is preserved but with different exponent.Comment: 5 pages, 3 figure

    New insight into WDVV equation

    Full text link
    We show that Witten-Dijkgraaf-Verlinde-Verlinde equation underlies the construction of N=4 superconformal multi--particle mechanics in one dimension, including a N=4 superconformal Calogero model.Comment: 16 pages, no figures, LaTeX file, PACS: 04.60.Ds; 11.30.P

    Extremal Black Hole and Flux Vacua Attractors

    Full text link
    These lectures provide a pedagogical, introductory review of the so-called Attractor Mechanism (AM) at work in two different 4-dimensional frameworks: extremal black holes in N=2 supergravity and N=1 flux compactifications. In the first case, AM determines the stabilization of scalars at the black hole event horizon purely in terms of the electric and magnetic charges, whereas in the second context the AM is responsible for the stabilization of the universal axion-dilaton and of the (complex structure) moduli purely in terms of the RR and NSNS fluxes. Two equivalent approaches to AM, namely the so-called ``criticality conditions'' and ``New Attractor'' ones, are analyzed in detail in both frameworks, whose analogies and differences are discussed. Also a stringy analysis of both frameworks (relying on Hodge-decomposition techniques) is performed, respectively considering Type IIB compactified on CY3CY_{3} and its orientifolded version, associated with CY3Ă—T2Z2\frac{CY_{3}\times T^{2}}{\mathbb{Z}_{2}}. Finally, recent results on the U-duality orbits and moduli spaces of non-BPS extremal black hole attractors in 3â©˝Nâ©˝83\leqslant N\leqslant 8, d=4 supergravities are reported.Comment: 1+74 pages, 2 Tables. Contribution to the Proceedings of the Winter School on Attractor Mechanism 2006 (SAM2006), 20-24 March 2006, INFN-LNF, Frascati, Ital

    Consistent Batalin--Fradkin quantization of Infinitely Reducible First Class Constraints

    Full text link
    We reconsider the problem of BRST quantization of a mechanics with infinitely reducible first class constraints. Following an earlier recipe [Phys. Lett. B 381, 105, (1996)], the original phase space is extended by purely auxiliary variables, the constraint set in the enlarged space being first stage of reducibility. The BRST charge involving only a finite number of ghost variables is explicitly constructed.Comment: 5 pages, LaTex. Minor corrections including the title. The version to appear in Phys. Rev.

    Intersecting Attractors

    Get PDF
    We apply the entropy formalism to the study of the near-horizon geometry of extremal black p-brane intersections in D>5 dimensional supergravities. The scalar flow towards the horizon is described in terms an effective potential given by the superposition of the kinetic energies of all the forms under which the brane is charged. At the horizon active scalars get fixed to the minima of the effective potential and the entropy function is given in terms of U-duality invariants built entirely out of the black p-brane charges. The resulting entropy function reproduces the central charges of the dual boundary CFT and gives rise to a Bekenstein-Hawking like area law. The results are illustrated in the case of black holes and black string intersections in D=6, 7, 8 supergravities where the effective potentials, attractor equations, moduli spaces and entropy/central charges are worked out in full detail.Comment: 1+41 pages, 2 Table

    Single Wall Nanotubes: Atomic Like Behaviour and Microscopic Approach

    Full text link
    Recent experiments about the low temperature behaviour of a Single Wall Carbon Nanotube (SWCNT) showed typical Coulomb Blockade (CB) peaks in the zero bias conductance and allowed us to investigate the energy levels of interacting electrons. Other experiments confirmed the theoretical prediction about the crucial role which the long range nature of the Coulomb interaction plays in the correlated electronic transport through a SWCNT with two intramolecular tunneling barriers. In order to investigate the effects on low dimensional electron systems due to the range of electron electron repulsion, we introduce a model for the interaction which interpolates well between short and long range regimes. Our results could be compared with experimental data obtained in SWCNTs and with those obtained for an ideal vertical Quantum Dot (QD). For a better understanding of some experimental results we also discuss how defects and doping can break some symmetries of the bandstructure of a SWCNT.Comment: 8 pages, 4 figure

    Constant magnetic field and 2d non-commutative inverted oscillator

    Get PDF
    We consider a two-dimensional non-commutative inverted oscillator in the presence of a constant magnetic field, coupled to the system in a ``symplectic'' and ``Poisson'' way. We show that it has a discrete energy spectrum for some value of the magnetic field.Comment: 7 pages, LaTeX file, no figures, PACS number: 03.65.-

    Doping- and size-dependent suppression of tunneling in carbon nanotubes

    Get PDF
    We study the effect of doping in the suppression of tunneling observed in multi-walled nanotubes, incorporating as well the influence of the finite dimensions of the system. A scaling approach allows us to encompass the different values of the critical exponent α\alpha measured for the tunneling density of states in carbon nanotubes. We predict that further reduction of α\alpha should be observed in multi-walled nanotubes with a sizeable amount of doping. In the case of nanotubes with a very large radius, we find a pronounced crossover between a high-energy regime with persistent quasiparticles and a low-energy regime with the properties of a one-dimensional conductor.Comment: 4 pages, 2 figures, LaTeX file, pacs: 71.10.Pm, 71.20.Tx, 72.80.R

    On Quantum Special Kaehler Geometry

    Full text link
    We compute the effective black hole potential V of the most general N=2, d=4 (local) special Kaehler geometry with quantum perturbative corrections, consistent with axion-shift Peccei-Quinn symmetry and with cubic leading order behavior. We determine the charge configurations supporting axion-free attractors, and explain the differences among various configurations in relations to the presence of ``flat'' directions of V at its critical points. Furthermore, we elucidate the role of the sectional curvature at the non-supersymmetric critical points of V, and compute the Riemann tensor (and related quantities), as well as the so-called E-tensor. The latter expresses the non-symmetricity of the considered quantum perturbative special Kaehler geometry.Comment: 1+43 pages; v2: typo corrected in the curvature of Jordan symmetric sequence at page 2
    • …
    corecore