6 research outputs found

    Historical and contemporary population genetics of the invasive western corn rootworm (Coleoptera: Chrysomelidae) in Croatia

    No full text
    Classical population genetic analyses were used to investigate populations of the western corn rootworm, Diabrotica virgifera virgifera LeConte, in Croatia in 1996 and 2009. The number of alleles was low in both 1996 and 2009; however, more alleles were found in the putative populations surveyed in 2009. Croatia had only 51% of the alleles recorded from the United States and 69% from Europe. However, 10 private (unique) alleles were found in Croatia, which were not found previously in Europe. Most populations were out of Hardy—Weinberg equilibrium, although no linkage disequilibrium was found. Low to no genetic differentiation was found between population pairwise comparisons in 1996, with a greater level of differentiation found between populations sampled in 2009. Using the program STRUCTURE, a single genetic cluster was found for populations sampled in 1996 and 2009. However, two genetic clusters were detected when the 1996 and 2009 data were combined, indicating significant temporal differentiation. Isolation by distance pattern of gene flow characterized populations sampled in 2009 only when the most distant population of Ogulin (the head of the expansion front) was included in the analysis. When Ogluin was excluded from the 2009 analysis no isolation by distance pattern was found. The possible impact that control practices have had on the population genetics of D. v. virgifera in Croatia from 1996 to 2009 are discussed in light of the temporal genetics differences found

    Risk Assessment and Area-Wide Crop Rotation to Keep Western Corn Rootworm Below Damage Thresholds and Avoid Insecticide Use in European Maize Production

    No full text
    The Western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has been a seri-ous quarantine pest to maize in Europe since the mid-1990s. The integrated pest management of WCR requires an accurate knowledge of the factors that contribute most to risks of crop damage, as well as knowledge of effective area-wide strategies based on agronomic measures, such as crop rotation. In Italy and Croatia, agronomic and cultural factors in fields damaged by WCR were eval-uated through a long-term survey. Based on the survey results, high-WCR densities contribute most to risks of damage to maize. Extensive field research in north-eastern Italy compared large areas of continuous maize production with areas under different crop rotation systems (i.e., a structural one with one-time maize planting in a three-year rotation and a flexible one with continuous maize planting interrupted when beetle populations exceed the threshold). The objective was to evaluate the effectiveness of different rotation regimes as possible best practices for WCR management. Captures of beetles in yellow sticky traps, root damage, larval densities, and damage to maize plants (e.g., lodging) were assessed at the center of each area. The results demonstrated the both structural and flexible crop rotation systems were effective strategies for maintaining WCR below damage threshold densities without the need for insecticides

    Climatic, edaphic factors and cropping history help predict click beetle (Coleoptera: Elateridae) (Agriotes spp.) abundance

    Get PDF
    It is assumed that the abundance of Agriotes wireworms (Coleoptera: Elateridae) is affected by agro-ecological factors such as climatic and edaphic factors and the crop/previous crop grown at the sites investigated. The aim of this study, conducted in three different geographic counties in Croatia from 2007 to 2009, was to determine the factors that influence the abundance of adult click beetle of the species Agriotes brevis Cand., Agriotes lineatus (L.), Agriotes obscurus (L.), Agriotes sputator (L.), and Agriotes ustulatus Schall. The mean annual air temperature, total rainfall, percentage of coarse and fine sand, coarse and fine silt and clay, the soil pH, and humus were investigated as potential factors that may influence abundance. Adult click beetle emergence was monitored using sex pheromone traps (YATLORf and VARb3). Exploratory data analysis was preformed via regression tree models and regional differences in Agriotes species\u27 abundance were predicted based on the agro-ecological factors measured. It was found that the best overall predictor of A. brevis abundance was the previous crop grown. Conversely, the best predictor of A. lineatus abundance was the current crop being grown and the percentage of humus. The best predictor of A. obscurus abundance was soil pH in KCl. The best predictor of A. sputator abundance was rainfall. Finally, the best predictors of A. ustulatus abundance were soil pH in KCl and humus. These results may be useful in regional pest control programs or for predicting future outbreaks of these species

    An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: Alternatives in major cropping systems

    No full text
    We present a synthetic review and expert consultation that assesses the actual risks posed by arthropod pests in four major crops, identifies targets for integrated pest management (IPM) in terms of cultivated land needing pest control and gauges the implementation \u201creadiness\u201d of non-chemical alternatives. Our assessment focuses on the world\u2019s primary target pests for neonicotinoid-based management: western corn rootworm (WCR, Diabrotica virgifera virgifera) in maize; wireworms (Agriotes spp.) in maize and winter wheat; bird cherry-oat aphid (Rhopalosiphum padi) in winter wheat; brown planthopper (BPH, Nilaparvata lugens) in rice; cotton aphid (Aphis gossypii) and silver-leaf whitefly (SLW, Bemisia tabaci) in cotton. First, we queried scientific literature databases and consulted experts from different countries in Europe, North America, and Asia about available IPM tools for each crop-pest system. Next, using an online survey, we quantitatively assessed the economic relevance of target pests by compiling country-level records of crop damage, yield impacts, extent of insecticide usage, and \u201creadiness\u201d status of various pest management alternatives (i.e., research, plot-scale validation, grower-uptake). Biological control received considerable scientific attention, while agronomic strategies (e.g., crop rotation), insurance schemes, decision support systems (DSS), and innovative pesticide application modes were listed as key alternatives. Our study identifies opportunities to advance applied research, IPM technology validation, and grower education to halt or drastically reduce our over-reliance on systemic insecticides globally
    corecore