22,451 research outputs found
Possible application of remote-sensing techniques and satellite communications for earthquake studies
Passive and active remote sensing techniques used with satellite communication for earthquake studie
Array E system grounding philosophy
This ATM briefly describes modifications to system grounding philosophy from those applied on previous flights and provides system, component, and experiment grounding details.prepared by R. Wallace
Pump linewidth requirement for optical parametric oscillators
Pumping laser bandwidth requirement for optical parametric oscillator
An \emph{ab initio} method for locating characteristic potential energy minima of liquids
It is possible in principle to probe the many--atom potential surface using
density functional theory (DFT). This will allow us to apply DFT to the
Hamiltonian formulation of atomic motion in monatomic liquids [\textit{Phys.
Rev. E} {\bf 56}, 4179 (1997)]. For a monatomic system, analysis of the
potential surface is facilitated by the random and symmetric classification of
potential energy valleys. Since the random valleys are numerically dominant and
uniform in their macroscopic potential properties, only a few quenches are
necessary to establish these properties. Here we describe an efficient
technique for doing this. Quenches are done from easily generated "stochastic"
configurations, in which the nuclei are distributed uniformly within a
constraint limiting the closeness of approach. For metallic Na with atomic pair
potential interactions, it is shown that quenches from stochastic
configurations and quenches from equilibrium liquid Molecular Dynamics (MD)
configurations produce statistically identical distributions of the structural
potential energy. Again for metallic Na, it is shown that DFT quenches from
stochastic configurations provide the parameters which calibrate the
Hamiltonian. A statistical mechanical analysis shows how the underlying
potential properties can be extracted from the distributions found in quenches
from stochastic configurations
Millimeter wave satellite concepts, volume 1
The identification of technologies necessary for development of millimeter spectrum communication satellites was examined from a system point of view. Development of methodology based on the technical requirements of potential services that might be assigned to millimeter wave bands for identifying the viable and appropriate technologies for future NASA millimeter research and development programs, and testing of this methodology with selected user applications and services were the goals of the program. The entire communications network, both ground and space subsystems was studied. Cost, weight, and performance models for the subsystems, conceptual design for point-to-point and broadcast communications satellites, and analytic relationships between subsystem parameters and an overall link performance are discussed along with baseline conceptual systems, sensitivity studies, model adjustment analyses, identification of critical technologies and their risks, and brief research and development program scenarios for the technologies judged to be moderate or extensive risks. Identification of technologies for millimeter satellite communication systems, and assessment of the relative risks of these technologies, was accomplished through subsystem modeling and link optimization for both point-to-point and broadcast applications
- …