35 research outputs found
Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of HF signals with microradian precision
Precision phase readout of optical beat note signals is one of the core
techniques required for intersatellite laser interferometry. Future space based
gravitational wave detectors like eLISA require such a readout over a wide
range of MHz frequencies, due to orbit induced Doppler shifts, with a precision
in the order of at frequencies between
and . In this paper, we present phase
readout systems, so-called phasemeters, that are able to achieve such
precisions and we discuss various means that have been employed to reduce noise
in the analogue circuit domain and during digitisation. We also discuss the
influence of some non-linear noise sources in the analogue domain of such
phasemeters. And finally, we present the performance that was achieved during
testing of the elegant breadboard model of the LISA phasemeter, that was
developed in the scope of an ESA technology development activity.Comment: submitted to Review of Scientific Instruments on April 30th 201
Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results
We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 ± 0.1 fm s−2/√Hz or (0.54 ± 0.01) × 10−15 g/√Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 ± 0.3) fm/√Hz, about 2 orders of magnitude better than requirements. At f ≤ 0.5 mHz we observe a low-frequency tail that stays below 12 fm s−2/√Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave
observatory with a sensitivity close to what was originally foreseen for LISA
Micrometeoroid Events in LISA Pathfinder
The zodiacal dust complex, a population of dust and small particles that
pervades the Solar System, provides important insight into the formation and
dynamics of planets, comets, asteroids, and other bodies. Here we present a new
set of data obtained using a novel technique: direct measurements of momentum
transfer to a spacecraft from individual particle impacts. This technique is
made possible by the extreme precision of the instruments flown on the LISA
Pathfinder spacecraft, a technology demonstrator for a future space-based
gravitational wave observatory that operated near the first Sun-Earth Lagrange
point from early 2016 through Summer of 2017. Using a simple model of the
impacts and knowledge of the control system, we show that it is possible to
detect impacts and measure properties such as the transferred momentum (related
to the particle's mass and velocity), direction of travel, and location of
impact on the spacecraft. In this paper, we present the results of a systematic
search for impacts during 4348 hours of Pathfinder data. We report a total of
54 candidates with momenta ranging from 0.2 to
230. We furthermore make a comparison of these candidates
with models of micrometeoroid populations in the inner solar system including
those resulting from Jupiter-family comets, Oort-cloud comets, Hailey-type
comets, and Asteroids. We find that our measured population is consistent with
a population dominated by Jupiter-family comets with some evidence for a
smaller contribution from Hailey-type comets. This is in agreement with
consensus models of the zodiacal dust complex in the momentum range sampled by
LISA Pathfinder.Comment: 22 pages, 14 figures, accepted in Ap
The Gravitational Universe
The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions
Anatomical basis for Wilms tumor surgery
Wilms tumor surgery requires meticulous planning and sophisticated surgical technique. Detailed anatomical knowledge can facilitate the uneventful performance of tumor nephrectomy and cannot be replaced by advanced and sophisticated imaging techniques. We can define two main goals for surgery: (1) exact staging as well as (2) safe and complete resection of tumor without spillage. This review aims to review the anatomical basis for Wilms tumor surgery. It focuses on the surgical anatomy of retroperitoneal space, aorta, vena cava and their large branches with lymphatics. Types and management of vascular injuries are discussed