28,097 research outputs found

    The Intergenerational Effects of Early Childbearing

    Get PDF
    Since World War II, the average age at which women experience their first birth has drifted up, but since 1986 there has been a resurgence of births to teenagers. Just as early fertility appears to adversely affect the life chances of the teen mother, it may also have negative effects on her children. We hypothesize that when the children of teen mothers are young adults, they will tend to have lower education, and will be more likely to be economically inactive, to have children when they are teens, and to have children out of wedlock when they are teens. In this paper, we present several models designed to reveal the impact that being born to a teenage mother has on children's chances for success as young adults. Our findings indicate that the children of mothers who first gave birth as teens are adversely affected as young adults.

    Strong Correlations Produce the Curie-Weiss Phase of Nax_{x}CoO2_2

    Get PDF
    Within the t-J model we study several experimentally accessible properties of the 2D-triangular lattice system Nax_xCoO2_2, using a numerically exact canonical ensemble study of 12 to 18 site triangular toroidal clusters as well as the icosahedron. Focusing on the doping regime of x0.7x\sim0.7, we study the temperature dependent chemical potential, specific heat, magnetic susceptibility and the dynamic Hall coefficient RH(T,ω)R_H(T,\omega) as well as the magnetic field dependent thermopower. We find a crossover between two phases near x0.75x \sim 0.75 in susceptibility and field suppression of the thermopower arising from strong correlations. An interesting connection is found between the temperature dependence of the diamagnetic susceptibility and the Hall-coefficient. We predict a large thermopower enhancement, arising from {\em transport corrections} to the Heikes-Mott formula, in a model situation where the sign of hopping is reversed from that applicable to Nax_xCoO2_2.Comment: 5 pages, 4 figure

    Do Teens Make Rational Choices? The Case of Teen Nonmarital Childbearing

    Get PDF
    With emphasis on the role of economic incentives, we explore the determinants of a woman’s choice of whether or not to give birth as an unmarried teenager. Our data are taken from the Panel Study of Income Dynamics. Guided by a simple utility-maximization model, we represent the income possibilities available to teenaged women if they do and do not give birth out of wedlock. We estimate these choice-conditioned income possibilities through a two-stage probit procedure, relying on the observed incomes of a secondary sample of somewhat older women. The response of the young women in our primary sample to these income expectations is measured after controlling for the effects of a variety of other factors, including the characteristics of the girl’s family, the social and economic environment in which she lives (including such policy-related factors as expenditures by states on family planning programs and education), and her own prior choices. We use the estimated structural parameters from our model to simulate the effects of a variety of policy interventions on the probability of becoming an unmarried teen mother. Our estimations provide evidence that income expectations have a persistent influence on the childbearing decision. They also provide evidence that the provision of public family planning expenditures and increases in parental education could reduce the prevalence of teen nonmarital births.

    Solar photochemical process engineering for production of fuels and chemicals

    Get PDF
    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6% are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6%. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel

    Review of solar fuel-producing quantum conversion processes

    Get PDF
    The status and potential of fuel-producing solar photochemical processes are discussed. Research focused on splitting water to produce dihydrogen and is at a relatively early stage of development. Current emphasis is primarily directed toward understanding the basic chemistry underlying such quantum conversion processes. Theoretical analyses by various investigators predict a limiting thermodynamic efficiency of 31% for devices with a single photosystem operating with unfocused sunlight at 300 K. When non-idealities are included, it appears unlikely that actual devices will have efficiencies greater than 12 to 15%. Observed efficiencies are well below theoretical limits. Cyclic homogeneous photochemical processes for splitting water have efficiencies considerably less than 1%. Efficiency can be significantly increased by addition of a sacrificial reagent; however, such systems are no longer cyclic and it is doubtful that they would be economical on a commercial scale. The observed efficiencies for photoelectrochemical processes are also low but such systems appear more promising than homogeneous photochemical systems. Operating and systems options, including operation at elevated temperature and hybrid and coupled quantum-thermal conversion processes, are also considered

    The design of aircraft brake systems, employing cooling to increase brake life

    Get PDF
    A research program was initiated to determine the feasibility of using cooling to increase brake life. An air cooling scheme was proposed, constructed and tested with various designs. Straight and curved slotting of the friction material was tested. A water cooling technique, similar to the air cooling procedure, was evaluated on a curved slotted rotor. Also investigated was the possibility of using a phase-change material within the rotor to absorb heat during braking. Various phase-changing materials were tabulated and a 50%, (by weight) LiF - BeF2 mixing was chosen. It was shown that corrosion was not a problem with this mixture. A preliminary design was evaluated on an actual brake. Results showed that significant improvements in lowering the surface temperature of the brake occurred when air or water cooling was used in conjunction with curved slotted rotors

    Diagnostics of the structure of AGN's broad line regions with reverberation mapping data: confirmation of the two-component broad line region model

    Full text link
    We re-examine the ten Reverberation Mapping (RM) sources with public data based on the two-component model of the Broad Line Region (BLR). In fitting their broad H-beta lines, six of them only need one Gaussian component, one of them has a double-peak profile, one has an irregular profile, and only two of them need two components, i.e., a Very Broad Gaussian Component (VBGC) and an Inter-Mediate Gaussian Component (IMGC). The Gaussian components are assumed to come from two distinct regions in the two-component model; they are Very Broad Line Region (VBLR) and Inter-Mediate Line region (IMLR). The two sources with a two-component profile are Mrk 509 and NGC 4051. The time lags of the two components of both sources satisfy tIMLR/tVBLR=VVBLR2/VIMLR2t_{IMLR}/t_{VBLR}=V^2_{VBLR}/V^2_{IMLR}, where tIMLRt_{IMLR} and tVBLRt_{VBLR} are the lags of the two components while VIMLRV_{IMLR} and VVBLRV_{VBLR} represent the mean gas velocities of the two regions, supporting the two-component model of the BLR of Active Galactic Nuclei (AGN). The fact that most of these ten sources only have the VBGC confirms the assumption that RM mainly measures the radius of the VBLR; consequently, the radius obtained from the R-L relationship mainly represent the radius of VBLR. Moreover, NGC 4051, with a lag of about 5 days in the one component model, is an outlier on the R-L relationship as shown in Kaspi et al. (2005); however this problem disappears in our two-component model with lags of about 2 and 6 days for the VBGC and IMGC, respectively.Comment: 7 pages, 5 figures. Accepted for publication in the Special Issue of Science in China (G) "Astrophysics of Black holes and Related Compact Objects

    Optical Continuum and Emission-Line Variability of Seyfert 1 Galaxies

    Get PDF
    We present the light curves obtained during an eight-year program of optical spectroscopic monitoring of nine Seyfert 1 galaxies: 3C 120, Akn 120, Mrk 79, Mrk 110, Mrk 335, Mrk 509, Mrk 590, Mrk 704, and Mrk 817. All objects show significant variability in both the continuum and emission-line fluxes. We use cross-correlation analysis to derive the sizes of the broad Hbeta-emitting regions based on emission-line time delays, or lags. We successfully measure time delays for eight of the nine sources, and find values ranging from about two weeks to a little over two months. Combining the measured lags and widths of the variable parts of the emission lines allows us to make virial mass estimates for the active nucleus in each galaxy. The virial masses are in the range 10^{7-8} solar masses.Comment: 24 pages, 16 figures. Accepted for publication in Ap

    Stability of the Submillimeter Brightness of the Atmosphere Above Mauna Kea, Chajnantor and the South Pole

    Full text link
    The summit of Mauna Kea in Hawaii, the area near Cerro Chajnantor in Chile, and the South Pole are sites of large millimeter or submillimeter wavelength telescopes. We have placed 860 GHz sky brightness monitors at all three sites and present a comparative study of the measured submillimeter brightness due to atmospheric thermal emission. We report the stability of that quantity at each site.Comment: 6 figure

    Feasibility study for a scanning celestial attitude determination system SCADS on the IMP spacecraft Final report

    Get PDF
    System design analysis to establish feasibility of using electro-optical celestial scanning sensor on IMP spacecraft for determination of spacecraft attitude by star measurement
    corecore