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SECTION 1

3
	SUMMARY

A research program was initiated to ;determine the feasibility of using

#	 cooling to increase brake life.
f

<<

	

	 An air cooling scheme was proposed, constructed and tested with various

designs. Straight and curvedslotting of the friction material was tested,

-r

	

	
A water cooling technique, similar to the air cooling procedure, was

evaluated on a curved slotted rotor.

Also investigated was the possibility of using a phase-change material

x	 within the rotor to absorb heat _during braking., Various phase-changing ma

terials _ were tabulated and a 50%, (by weight) LiF BeF2 mixture was chosen.

?	 It was shown that corrosion was not a problem with this _mixture. A prelimin-

ary design was evaluated on an actual brake.

Results showed that significant improvements in lowering the surface

'i	 temperature of the brake occurred when air or water cooling was used in con-

junction with curved slotted rotors.
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SECTION 2

INTRODUCTION

r

a
.

There are three major areas of concern in present aircraft brake systems,

wear, temperature effects and induced friction vibrations.
i

The brakes are one of the heavier components on an aircraft and there is	 `}

always an incentive to reduce the size and weight. This tendetic, has resulted

in temperatures approaching the practical limit for the materials in use. I>

Examination of used brakes removed at overhaul shows that the steel rotors have

(Rockwell C45 to Rockwell C17) and there is often evidence of plastic distortion.

The copper-base brake materials are oxidized throughout which seriously lowers;

their strength and conductivity. The high temperatures also greatly increase

ns t RPI show that ear of the current brake mathe wear : rate. Investigations a	 at w 
i-

aeral increased rapidly at temperatures above 600°C. There is conclusive	 r

evidence that temperatures are higher than this during braking. Cleary,

materials are ;needed that can tolerate higher temperatures and can absorb more	 t

energy at a lower temperature.

To solve these problems a high energy brake program has been underway at

RPI. Initial studies were concerned with the development of higher temperature,-^^

low wear brake friction Materials (Ref.l), improved pad design to make them more AJ

compliant (Ref,2), and analysis of the temperatures and contact areas in sliding
2

(Ref.3) •
	 -

It was proposed to extend this work into the area of innovative braking

concepts. That is to design higher temperature braking systems. Consideration 	 ?'

was given to new materials and auxiliary-cooling. A test rigwas constructed

to evaluate a complete brake. See Figure 1 for a schematic diagram of the test

equipment and Figure'2 for a photograph of the test.equipment. The rig is of

such a design that it can be modified appreciably to evaluate new braking con- 	 r r

cepts- and configurations. Several braking concepts were designed and evaluated.

These are as follows-:

1. Cooling	 F

There is conflicting evidence on the advantages and disadvantages r.

of cooling either in the air, on the ground, or during braking with either gas

or water. A review of this experience was made and specific experiments con- 	 I

ducted to determine their `effectiireness both in cooling and in additional weight 	 µ

-	 2.
I`

_	 t
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FC

cooled braketo be carried.	 Specifically both an air cooled brake and a water c 1

were evaluated.	 Temperatures and friction torque were measured as well as

wear.	 It was necessary to determine the extent to which temperatures can be

lowered and how this would affect wear and material requirements in order to l

assess the effectiveness of the cooling schemes.
Z

2, Fluoride-Filled Rotor System
ice«

}
4

In this system a fluoride filled rotor replaces the solid rotors

currently in use.	 The rotor was constructed hollow and filled with a material H

which will absorb considerable energy in a change of state.	 This, in effect,

increases the specific heat of the system.	 Fewer fluoride-filled rotors of

greater thickness were proposed.	 The loss of braking area with fewer rotors H",

is compensated for by increasing the load by asuitable -factor.	 The higher

load gives better surface conformity and more efficient braking. 	 A rotor was

constructed and compared with the results of a multiple rotor system using the ,'
';

same materials.	 First an analysis of such a system was made to determine if

the temperatures, wear rates, and braking torque are realistic when using 1	 '

practical construction materials.	 In particular, it was necessary to observe

whether a significant reduction in surface temperature would result,

s	 _g

f	 ^
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SECTION 3
f.

APPARATUS, PROCEDURE AND DESIGN

r ^

Apparatus

The test rig consists of: an actual brake, 	 (from a small commercial jet

plane), a 175 Kw water cooled eddy current speed controller, and a 75 Kw AC

electric motor.	 A photograph of the brake modified to incorporate air and water

cooling, is shown in Figs',,3-1'and 3-2.	 Figure 4 shows a sectional _view of this

` brake system.	 It is composed of two steel stator plates containing annular"

`-^ friction pads, these two stators sandwich the rotor disk. 	 The rotor is splined

outward into the wheel half	 is fixed on the shaft of the coupling.	 The,which y

eddy current speed controller allows the rotor to be rotated at any rpm, up

to the maximum of 1700 rpm.	 The dimensions of the rotor and stator are shown r
in Figures 5 and 6, respectively,	 Figure 7 indicates the dimensions of the
friction pad and fastener. 	 Also shown in Figure 7 is,their assembly in the

stator plate.	 This assembly is performed hydraulically on a small hand press,

(a load of 2.2? X 104 Newtons is applied to each fastener), i,

The brakingload is applied by compressed air through a solenoid valve,
x

actuated by an electronic timer, therefore the braking time is controlled

automatically.

Measurin	 System f

A torquemeter,- consisting of four strain gages, is mounted on the shaft
connecting the two stators to the platform. .i

.A semiconcudtor pressure transducer is located in the air supply line to

the brake clamping mechanism. {.

Angular	 the	 is 'determined from	 tachometer	 in thespeed of	 rotor	 a	 mounted s
r^

eddy current coupling.

Approximate surface temperature measurements are Obtained from seven

chromel - alumel thermocouples installed within 1.59 mm of the sliding surface%

in four of the 24 friction pads located on the stators. 	 The geometrical loca-

tion of these thermocouples is shown in Figure 8.

t

r.
iz

6. y
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Figure 3-2 Brake with Air Cooling Modifications
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The data obtained from these four measuring devices, namely, torque,

braking pressure ., rpm, and temperature (in seven locations) are continuously

° recorded simultaneously on a 12-channel oscillograph recorder during the entire'`
r

braking period.

Procedure and Designs

The. rotor._disk" i s s^rfara-f, n . chn	 .^-- -----	 ^- 'pp=	 = at_^y; 12 -L us e and c eaileci - -

r
with solvent.	 Then it and two stators are weighed and assembled in the brake.

{ The whole rig is always well aligned before running to avoid any vibrational

damage.	 The braking scheme was evaluated under several different braking con-
y-	

y ditions by varying: applied load (braking pressure), velocity and slide time.,

r,
The basic test procedure for eachbraking configuration consisted of the follow-`

ing four series of tests:

1. - Low Toad (3.24 X 103 N), low speed (850 rpm) for 30 seconds.

2.	 Low load (3.24 X 103 N), high speed (1700 rpm) for 30 seconds.

3. - High load (6.31 X 103 N), low speed (850 rpm) for 20 seconds.

- 4. - High load (6,31 X 103 N), high speed (1700 rpm) for 20 seconds. r

For each of the above four series, five tests are performed, (total of y
20 tests).	 The stators and rotor are removed after each series and reweighed

4

to determine wear.	 The sliding surfaces are inspected for damage.

There are five brake configurations to be tested: air cooling -no slots,
NJair cooling-straight slots, air cooling-curved slots, water cooling-curved p

slots and fluoride-filled rotors.

Air Cooling

To determine if there exist any benefits in brake life by air cooling, x!

the.following,scheme was used:

Air was piped into the core of the brake by means of a 2.38 mm (3/32")

diameter U -shaped stainless steel tube containing 12 uniformly spaced 0;75 mm

(0.0295") diameter holes, 	 (see Figure 9)-.	 It is supplied from both ends by a

4.76 mm (3/16") diameter stainless steel tube connected to four 1.38 X 10 7 N/m2 f

(2,000 psi),	 6.51 m3	(230 cubic feet) air cylinders through a regulator and

14.



C..
C.
r

^t «

i

f

f

t

O ^ov^
^tz

d

r^
rd

It O

t17

I



l6^	 .`	
.`.^^

`

pressure gage.	 During the test	 air pressure was monitored visually by using

as shown by the dotted

-°m
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SECTION A-A
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j A 	 51° 25` 43"
B	 48°
C	 330 A
D	 4.13 cm g SLOTS MILLED THROUGH

FRICTION	 MATERIAL
C 14 SLOTS EACH SIDE

i

i DIRECTION
OF ROTOR

^I
0.95 cm.
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d k1
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Figure 12	 Curved Slotted Rotor.
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Water Cooling

Water was -supplied to the core of the brake by means of the same supply

line as used for air.	 This time 	 however, it was supplied (from both ends),

by a 4.76 mm (3,116") diameter stainless steel tube connected to a 4.55 X 10 73 m3
r i

(1 gallon) water tank and pressurized to 1.38 X UP N/n? 	 (200 psi).	 This pres-

sure is maintained constant throughout the test by a regulator and air cylinder.

The water cooling was used only for the curved slotted annular brake

described above.

Fluoride Filled Rotor System

An analysis of present compounds was performed to obtain a substance with

a melting point below 600°C, and a high density and heat of fusion combination.

Previous work in RPI's Trbology Laboratory (Ref.S) has shown that due to poor

external dissipation of heat from the brake, the specific heat and the density

are the most important factors.	 Since we are considering a material which will

undergo,a phase change, the heat of fusion is analogous to the specific heat'

during the phase change.

The two important parameters used for such an evaluation are therefore pC

t	 and pHf 	(p = density, C = specific heat and H= = heat of fusion). 	 Values of x

these were collected for a large number of substances. 	 The more promising

substances are listed in Table.I (Refs.6 1 7,8 and 9).

^	 It is evident,. from Table I, that compounds and binary alloys are superior ^ ^.

to pure metals from a heat absorbing standpoint. 	 It can also be seen that the
N

eutectic mixture of 50% (by weight) LiF and BeF2 is the most promising.
^

This combination can absorb 61% more heat, in a temperature rise from „.

21'C to 660°C than an equal sized Beryllium brake.

! !	 It must be determined how long it will take for the entire core of the

brake rotor to melt.	 This was done by deriving an expression for the rate of

" solid and liquid boundary movements (see 'Appendix II,).

For the purpose of testing and evaluating the capabilities of the hollow
„s

rotor system, the following test design was proposed: 	 A 1.91 cm (3/4") thick

j'	 17-22 AS steel rotor containing 21 pockets was filled with the LiF-BeF 2 n

mixture.	 The design is shown in Figure 13 and the actual rotor is shown in

Figure 14.	 Before constructionn of an actual rotor a test sample of 17 -22 AS
^

steel filled with LF-BeF2 was thermally, cycled from 300 C to 700°C and it was a°
y

+ datermine:d that corrosion.was not a problem.

^' 20.
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TABLE I

POSSIBLE HEAT STORAGE MIXTURES

i

f! .

1
r.

f

E

J

^k

k	 .

i

Substance Melting Density Density X" Density X l) Total Heat
Point (gm/cc) Heat of Heat Absorbed

(°C) Fusion Capacity During 2VC
(cal/cc) (cal/ceK) to 660°C

Temp.. Rise

Compounds

50% LiF
50% BeF2
(by wt.) 360: 2.3 352. .743 827.

LiOH 462. 1.46 151. .774 645.

KC 1 -
MgC12 487. 2.14 160. .762` 647.

LiBr 552_. 3-.46 116., .495 431.

LiCl 614. .207 156, .592 534.

MnCl.2 650. 2.98 174. .450 462.

NaNO3 310, 2.26 100. .565 460.

Binary Alloys

Al -, Cu
67% Al 548. 4.77 233. .711 687.

Al - Zn
95% Zn 382. 6.92 177. .69 618.

Ca - Cu -
63% Cu 560. 6.34 176. .70 623.
Cu - Mg
65.4% 552.' 6.46 213. ,78 711.

Metals

Zn	 419,5	 7.0	 189.	 .651`	 415.

Bea) 1285. 1,.85 599. -	 .807_ 515.

Notes
1) For an explanation of heat capacity and heat of fusion calculations,

for alloys, see Appendix I.

") Phase separation may be a problem with the binary alloys. If so,, some
of the constituents may not melt until very high temperatures.

3) Beryllium is included here to indicate the relative orders of magni-
tulle of the substances in the table. Its melting point is too high
to be considered as a possible phase change material.

21.
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SECTION 4

k ,
F RESULTS AND DISCUSSION

,t 'three sets of tests were run in order to evaluate the application of an

air or water cooling, the design of slotted rotors, as well as the concept of

the filled rotor. 	 All the results were obtained for the copper based brake
E:

material rubbed against. 17-22 AS steel. 	 They are .presented and discussed in
i

the following sections.

f r

^ a Air Cooling

As mentioned in the last section, the pad brake and slotted annular brakes

were applied during the evaluation phase of this work. 	 Therefore two separate ""
j

sets of comparisons were made as follows; u

(1) Pad Brake Tests,	 The pad brake was used to find the cooling effect

' of pressurized air. 	 Here expansion cooling of this compressed air was ex-

pected.	 The test results were tabulated in Table II. 	 They were also compared

{	 - with those of previous work (Ref.4), in which the same pad brakes were used_

but no air cooling applied. 	 Comparison of these data are shown in Figures 15

and 16.
r 4

i
As shown in Figure 15, no cooling effect isindicated. 	 It is felt that

the contact of both mating surfaces was so intimate that there was no path

for the air to pass and carry the frictional heat from the interface. 	 There-

fore 	 the design of slots on both surfaces of the rotor disk was necessary.

This willbe 'discussed later. 	 No notable change of wear or friction due to

the cooling was found (see Fig.16)

(2) Slotted Annular Brake Tests. 	 The compressed air cooling scheme was

maintained the same in these tests.	 First, the straight slotted friction,`
i

material rotor was used, sliding against steel pads'. 	 The summary of results

is listed in Table III.	 Also they are compared with those of the work in

Ref.4 1 which were obtained for the same brake but under the condition of no 3

air cooling (see Figs,17 and 18). 	 The curve for no air cooling is ,designated

and that with air cooling is designated "2" in the figures. 	 In Figure 17, j.

the ;rpt..perature points of curve "2" show even higher than those of "I". 	 This
means that the design of straight slots on the rotor did not assist air in

-passing through to absorb frictional heat from the contact zone. 	 The reduction

24.
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i	 TABLE II

t ' 
I	

EVALUATION TEST SERIES FOR A COPPER BASE FRICTION

t MATERIAL WITH PRESSURIZED AIR COOLING
r

Te$t Series # 1 2 3 4

Apparent Pressure
of Contact (NAP) 2.17 x 165 2.17 x 105 4.12 x 105 4.02 X 105

Angular Velocity
(rpm) 808. 1640. 813. 1640.

Slide Time
(seconds) 30. 30. 20. 20.

Final Coefficient
of Friction .499 .358 .428 .256

Average Surface
Temperature (' C) 387. 554. 429. ' 572.

Frictional K.E.
(joules) 7.55X105 11.52X106 7.81X105 11.47X105

PV - (N/m2	(rad/sec) 1.84 X Id' 3.73 X Id , 3.51 X 10% 6.91 X Id'

Total Wear
(grams) .78 4.184 1.072 6.606

Stator
Wear Rate
(gm/sec) .0529 .1395 .0536 .3303

Total` Wear
(grams) .062 2.288 .312 2.700

Rolt-nr
Wear Rate
(gm/sec) .0021 .0763 .0156 .1350
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Test Series 1 2 3

Apparent Pressure of
Contact (N/m2 ) 2.2 X 105 2.2 X 105 4.3 X 105

Angular Velocity (rpm) 850	 - 1700 820

Slide Time (Seconds) 30 30 20

Final Coefficient
of Friction ,32 .30 .29

Average Final Surface
Temperature (°C) 322 477 379

Frictional Kinetic
Energy (Joules) 5.06 X 105 8.8 X 105 5.62 X 105

PV (N/m2 ) • (rad/sec) 1.97 X 107 3.94 X 107 ; 3.64 X 107

Total
Wear/Run

(gr) .63 1.59 .75
Frictional Wear Rate
Material

Run
(gr/sec) .021 .053 .038

Total Wear

-Steel (gr) .70 .39 1.09

17-22 AS Wear Rate
(gr/sec) .023- .`013 .055

F

I

ii
TABLE III

EVALUATION TEST SERIES FORA COPPER-BASE FRICTION MATERIAL EMPLOYING
PRESSURIZED AIR COOLING AND A_STRAIGHT SLOTTED ROTOR

i
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of contact area because of slotted design resulted in slightly higher tem-

peratures. No change of wear was found (Fig.18).

In order to have air pumping, the design of curved slots in friction

' rotor was employed and evaluated. 	 The results are summarized in Table IV.
s

Similarly, they are plotted and designated as curve 3 in both Figures 17 and 18.

The cooling benefit is indicated in Figure 17 with application of this curved

slotted design.	 Also it is seen that lower temperatures were obtained for -,

maximum operative speed at 1750 rpm. 	 These points deviate from the other

sections of curve "3", which were obtained for tests at medium speed (1300 rpm)

or low speed (850 rpm).	 This means that the higher velocity of rotor activa-

tion improved pumping of the curved slots.

The slightly high wear was found (Fig.18). 	 This could be the result that

a 'lot of loosening particles were blown away from the interface. 	 Further

work is needed for confirmation.	 An increasing friction curve (3) is shown r

in the last figure ,along the basis of energy.

Water Coolie

Only the ,curved slotted rotor, was applied in this water cooling scheme.-

Therefore, the curved slotted annular brake was used for this phase of the i

evaluation testing. 	 As mentioned before, 4.55 X 1073 m3- (1 gallon) water was
i

F supplied during 20 sec braking for each test. 	 The results were tabulated in

Table V.	 The significant data are presented and compared with those of

previous works in Figures 17 and 18 3 (designated curve "4" in each).	 As

expected,' the lowest temperature curve is found with water cooling. 	 The

average surface temperatures remainedbelow 100°C along the whole frictional

energy range, even above the value generated during normal stops (1(f Joules).

The low wear (see Fig.18) is the result of the low temperatures generated. ^.y

The friction drops linearly from 0.4 to 0.24 with the increasing of the

frictional kinetic energy from 4.0 to 10.7 X 10 5 Joules (Fig.18).	 At the

present time no precise explanation can be given for this effect.

Filled Rotor Concept

A high heat absorbing fluoride substance was selected.	 Testing of this>
^:	 s

LiF-BeF2 eutectic mixture in intimate contact with the 17-22 AS steel, after

repeated thermal cycling indicated that corrosion was not a problem. f"

a

4

4
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TABLE IV

EVALUATION TEST SERIES FOR A COPPER-BASE FRICTION MATERIAL EMPLOYING
PRESSURIZED AIR COOLING AND A CURVED SLOTTED ROTOR

Test Series 1' 2 3 4, 5,

Apparent Pressure of

Contact (N/m2 ) 2.1 X 105 4.3 X 105 2.1 X 105 4.2 X 105 4.2 X 105

Angular Velocity (rpm) 840 840 1700 1400 1700

Slide Time (Seconds) 30 30 20 20 20

Final Coefficient
of Friction ,24 .40 .37 .32 .36

Average Surface
Temperature (°C) 162 403' 156 337 417

Frictional Kinetic
Energy (Joules) 3.83 X 105 11.3 X 105 6.83 X 105 9.56 X 105 12.51X105

PV (N/n-P)	 (rad/sec) 1.87 X 107 3.77 X Id' 3.79 X 107 5.98 X ld' 7.25 X 107

Total Wear/Run

(gr) .98 4..31 2.30 1.90 7.40
Frictional

Wear Rate/RunMaterial

(gr/sec) .033 .144 .115 -.095 .37

Total Wear

Steel (gr) .13 0 0 0 .37

Wear Rate17-22 AS
(gr/sec) .0043 0 si 0 R 0 .0185

y

7

j
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TABLE V

EVALUATION TEST SERIES FOR A COPPER—BASE FRICTION MATERIAL EMPLOYING	
NJ

WATER COOLING AND A CURVED ROTOR

€j

^j

n
j

sj

i

i

Y

S

'E
E

Test Series 1 2 3 4

Apparent Pressure of
Contact (NhP) 2.2 X 105 4. 2 X 105 4.3 X 105 2.3 X 105

Angular Velocity (rpm) 800 1700 1000 1700

Slide Time (Seconds) 20 20 20 20

Final Coefficient
of Friction .40 . 24 .31 .32

Average Surface
Temperature (°C) 34 71 67 56

Frictional Kinetic
Energy (Joules) 4.08 X 105 10.74 x 105 7.78 X 105 7.32 X 105

?PV MAP)	 (rad/sec) 1.86 X 107 7.38 X 107 4.3 X 107 4.0 X 107

Total Wear/
Run

Frictional r 1.26 1.26 1.62 .70
Material Wear Rate/

KN.

Run
(gr/sec), .063 .063 _, .081 .035

Total Wear
Steel (gr) NA 1.18 1.06 .46
17-22 AS Wear. Rate

(gr/sec) NA .059 .053 .023'
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A fluoride filled rotor was made (as shown in Fig.14) and evaluated by

sliding against two stators with annular round pads of the current copper
r{

based friction material.	 The results are listed in Table VI and compared with

those of pad brake tests where a common solid steel rotor was used. 	 No benefit

was found from the temperature data (Fi.g.19) or the friction and wear data

(Fig.20).	 It should be noted that the melting of the eutectic salt appears to

correspond with `a temporary drop in temperature from 400°C to 325 0 C during a

kinetic energy increase from.6.3 X 10 5 Joules to 7.7 X 105 Joules._ Thermal

conductivity of the eutectic salt (Appendix II), or of 17-22 AS steel was not

a problem.

a	 The eutectic; mixture did not further lower the temperature because it had

all melted.	 The molten salt has a low heat capacity. 	 More fluoride would

have to be incorporated into the design of the rotor to further reduce the

temperature,

A

,a

i
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s !	 TABLE VI

EVALUATION TEST SERIES FOR A COPPER-BASE FRICTION MATERIAL
I^ WITH A LiF-BeF2 FILLED ROTOR

Test Series 1 2 3 4 5

Apparent Pressure of
Contact (N/m2) 2.1X105 2.1X105 4.2X 106 4.2x105 4.2X105

Angular Velocity (rpm), 850 1700 840 1700, 1400

Slide Time (Seconds) 30 30 20 20 20

Final Coefficient
of Friction .46 .,20 .32 .30 .39

Average Surface
Temperature ('C) 327 394 369 568 541

Frictional Kinetic
Energy (Joules) 7.72  x 105 6..34 x106 7.06 x105 13.0 X 105 12.7 X105

PV(N/n?) 	 (rad/sec) 1.91 x 107 3.80X10`1 3.70 X 107 7.18 X 107 6.00 X 107'

Total Wear/Run

Frictional
(gr) 1.35 .92 1.18 5.76 2.50

Wear Rate/RunMaterial

(gr/sec) .045 .031 .059 .288 _.125

Total Wear

Steel' (gr) 37 ,68 .28 4.58 2.14

Wear Rate -17-22 AS

(gr/sec) .012, .023 .014 ,229 .107
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SECTION 5

' SUMMARY OF RESULTS l
s

,i
P

A program has been underway to evaluate several design modifications with

} the application of air or water cooling or the concept of the filled rotor for •
a

use in aircraft brakes.	 The following results have been obtained for the cur-

rent copper based materials sliding against 17-22 AS steel:

(1) The pressurized air cooling applied for the ordinary pad brakes
} mo w. ,q

yields no improvements in lowering the surface temperatures and wear. i

(2) The pressurized air cooling applied for the straight slotted annular

brake yields higher temperatures.	 No cooling benefit is indicated

with the application of straight slots on the rotor. 	 The reduction

of contact area due to this design results in slightly higher,

- temperatures.

(3) The pressurized air cooling applied for the curved slotted annular

brake yields lower temperatures. 	 Air pumping is obtained using

- curved slots on the rotor; however higher wear is found.

(4) The water cooling applied for the curved slotted annular brakeyields

the most promise. 	 Using less than a gallon of water, temperature

can be reduced by 88% and wear of the friction material can be reduced

by 76%.	 The friction is 0.3.
I(m^.

(5) Based upon an analysis of present compounds, a- high 'heat ,absorbing

fluoride substance (LiF 50% +`EeF2 50%) is selected for the filled
G:

rotor concept.- No benefit is found from the temperature	 or the
;, w	 3

friction and wear data with the present configuration.
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APPENDIX I

Al.	
Y •".

Determination of a Conservative Estimate of the Heat Capacity
C	 [C = Heat Capacity]

•
}•

Although heat capacity is not constant 9 in general its value is lowest for

the solid phase.	 The heat capacity was evaluated at 2980 K and this will yield

a conservative value for C.	 The expression for C is:
r+

C = a + b(W-3 ) T + c(l( rs) T'2
t

where a and b are approximately the same order of magnitude and c = .1 for all

the substances listed. 	 The worst case of any substance considered was when

a = b C = .1.	 Then C(at 298°K)	 (at 933°K-	 _ ,242 and C	 ) _ , 205 .which is an i,	 •.

error of .less than.. 201. 	 Therefore assuming the heat capacity to be .constant at
298°K will not yield any misleading information in Table I.

2 . Calculation of Heat of Fusion of Alloys [H f _ Heat of Fusion], «'a

In the calculation of the heat of fusion of alloys, if the intermetallic

x

phase is completely disordered then Hf/Tmelt can be calculated additively from 1	 -',

the Hf/Tmelt of the individual constituents.	 However, if completely ordered

then a factor of -4,573N 	 to	 should b	 added	 h	 He ae	 to the	 /T`( 1	 g N 1 + N 2 log N 2<)	 f melt.'

The term to be added is positive because both N I and N. are less than 1. 	 A

conservative estimate of Hf/Tmelt is desired and therefore the Hf/Tmelt was i

calculated assuming a'completely disordered metallic phase, yielding conserva-

tive '(Smaller values of Ht .	 Fora more complete discussion,	 see Ref.5. y

3. Calculation of the Densities of Alloys
t

The densities of the alloys were obtained by taking the percentage by

weight of the densities of the alloying components.
4

A

'	 - v
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^ff=- APPENDIX II

The Derivation of an Approximate Expression for the Motion of the
Solid-Liquid Boundary within the Rotor (Ref.10) 	 {

I

Each stator is sandwiched between two rotors and each rotor applies .a

constant loading to the stator.	 Because of the symmetry of the problem it can

be reduced to a disk of half the thickness with a uniform heat flux Q on one

surface and insulated on the other major surface.

Simplifications

1) Since the conductivity of the steel encasing material is so much

larger than the conductivity of the fluoride s only the temperature char-

acteristics of the fluoride block during melting was modeled.

2) The block has been assumed to be semi-infinite in the direction of

heat flow and infinite in the other directions.
w-

i 3) Uniform constant heat source on the face of the slab. 	 Thus, the

4 problem will involve only one space dimension.

4) The coefficient of thermal diffusivity is assumed to be constant.

' The object is to find the propagation of the liquid-solid interface through the

f slab.	 To determine the type of discontinuity across the interface, assume that

' the recrystallization has already occurred to a distance X where 0 < X

The subscript 1 after a symbol will be used to indicate the solid region and the
I

2
a

subscript 2 to indicate the liquid region.

w

i Define
{

U ` = Adjusted temperature in liquid region	 - T2	 on	 TJ	 P	 q	
g^	

2	 melting

Ul = Adjusted temperature in solid region 	 Tl - Tme1ting	 -
_ p = Density

Hf = Heat of fusion

K1 = Thermal conductivity of the solid-

K2 = Thermal conductivity of the liquid

Q = Heat flux into the surface

X(t) = Location of the solid-liquid boundary

^(x) = Initial temperature distribution in the solid fluoride region

minus the melting point temperature

E g = Adjusted heat flux = -Q/K2

M
i

a = Diffusivity of the solid

1:
Al



f HR

i

A3.

^(x) is assumed to be expressible in a Taylor series expansion about x =0 with

C an infinite radius of convergence }

i Liquid Solid LL	 .

X(t.) t

U2 U^ z	 f

012 Q'y
a	 .

The heat balance across the interface is

U
PiHrX(t) _
	

ax	
_ K, ^

(-
(la) ».

,=	
=

x

Additional boundaryconditions are:

`

;a

X(t _ 0) = 0 (lb) Fa	 .._

Ul (x , 0 )	 ^ (x) (1c)

(o, t > _ g (ld)
2)X

.i f

The temperature distribution in the liquid region is:
i

2aU
(Z)

F l

`	

a

The temperature distribution in the solid region is:

a
iaU	 =	 a Uz	 for	 X(t) < x <z (3)

1

a

The temperature distribution at the interface is;

" It is possible to obtain a power series representation for X(t)

t = 0. by assuming t(x,t) expressible in a power series about x = 0^

about

t = 0 for

all U in the region 0 s x s X(t).	 Any discontinuities in the derivatives of U

are assumed to occur only on crossing the X(t) boundary.

a
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REPRODUCIBILITY OI' THE A4.

II AL PAGE IS POOR

Assume

r i-	 1

Co

X(t) _	 Cata 5)

a=or'

a
Ul (x, t)	 _	 ai,X1 t j

(6)
=0

Co

U2 (x, t) _	 bi ^ xt t ^ (7)

1, J=0

'
where a i j, bi d and C. are coefficients to be determined.

A
Equations (5),	 (6),	 (7) can be differentiated to yield:

Co

X(t) _	 Ca+i (n+1)t° ($)
A=O

Co

Uix -	 ai+,, ^	 (i + l)xi tJ (9)
ir9 ^O

UIxx =	 ai+2,4	 ( i +1)(i+2)xi t J (10)
191=0

,:{

Uit	 =	 as, a+x (J +1)xi t J (11)
I . J=o 1 r.s

Co ,..,

U2 	 =	 b1 +1 (i + 1)Xi tj (12)

Co

U2 xx -	 bi +2, 4 (i + 1) (i + 2)x i t j (13)

Uat	 =	 ^	 bi 	 d+i (J + 1:)xi t j (14) ^.

l try =o

Equations (lb) and (5) yield 
Co 

= 0, Egs.(ld) and (1) yield b io = g. Substi-

4	
4

tuting Egs..(5), (8),	 (9) and (10) into Eq(1a) yields the following recurrence

relation a

r

Co

(i+1)
Co	 i	 Co

(K2bt+1, j - Kl a, + , , ,) 	 ^	 Cmtm ) t J 	= pH, I	 (n+l)Cn+eta (R1)
U i. t	 =o M=O	 n=0

tr

c^ ,
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Substituting Egs.(5,6) into Eq.(4) yields

	

t -;	 CO	 CO	
j

l	

n

	

{	

ai 
r \	 cue) 

tJ	 0	 (R2)
19 3=O	 a=o

Substituting Egs.(5,7) into Eq.(4) yields

	

.. ^	
CO

\1

bs r J C	 Cn to J is	 0	 (R3)	
t

10J =0 	 n=0

Substituting Egs.(13) and (14) into Eq.(2) and rearranging yields

b1 +2. J	 (i + 1) ( + 2) b 1 # J +i	 (R4)

Substituting Egs.(10) and (11) into Eq.(3) and rearranging yields

+1

	

^i	
a1 +a, J	 i (i + 1) ('+ 2) a 	 (R5)

li

The Five resulting equations [(R1), (R2), (R3), (R4), (R5)], can be solved

for the coefficients ai , J , blr a and Cn. The series representing X(t), (the

movement of the solid-liquid boundary with time), is given below (through the

second power of t).
}

X(t)	 1 [K2 g -KjV(0)]t + l	 92 (K2g-K1^^(0))2	 `r
PHf	 2pHf

 [K2

I	
lr H0) 

(K2 9 KjV(0)) +ai ^"(0)] ] t2	 (15)	 j<e '
P f

I	
°

This expression can be used to obtain the location of the solid-liquid boundary, 	 Al

but first the initial temperature distribution of the solidfluoride mixture

(when the surface is at the melting point), must be found and expressed in a

Taylor series expansion around x = 0.

Qin — _	 all solid

3

1

 1 	 df.
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Let W be temperature defined as W = T - T,, , t ,,,, then the initial condition

becomes: W (t = 0) = 0	 and if Q is the heat flux into the material it has been

shown by Carslaw and Jaeger (Ref.9) that the temperature distribution is

2	 X2	 e-(x AW	 ^_Q	 erfcX	 (16)
TT	 2

or	
00

X

W	 Q	 erfc	 dX	 (17)
i

X
ko

The time (t,), for the surface to reach the melting temperature (T,. It , that

is at time tm is simply

t
C

I- (18)Tmelt	 Tinitla , K,	
TT

which reduces to

TTOI (Tmelt	 Tinit,
.1) 2

tX	 —	 (19)
4(f a

The temperature distribution when the surface is at T,, It , that is at time tm

is simply	
CO

X
^(X)	 W1	 Tinitial _Tzelt + (Q/Kj 	 erfc(

	
dX	 (20)Xt	

X	 2
t M

-2	 2Q	 X	 X
^(X)	 T	

+	 e7(X2 
/4gtm) -_ erfc-Tm a lt

{2
initial	

TT	 2

(21)

This can now be expressed as a Taylor series expansion

^(x)	 -(Q/K,)X +—	 (Q/Kj. X2	 (Q/K.,	 +	 (22)

I/1T	 4' (^, FTT at,

The propagation of the solid-liquid boundary can now be investigated.

However I the thermal conductivity of the LiF-BeF2 mixture in the solid and

liquid phase is unknown!	 In fact many thermophysical properties of salts or

salt eutectics are unknown.

3`	 i
M
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Since it is desired to determine approximately how large a quantity of

r
i

r	 i LiF-BeF2 could be completely melted during a normal braking, a very conserva-

i tive K value is assumed in performing the calculations,

To estimate the thermal conductivity, a weighted average of the components

is taken and half this value as a conservative estimate of the conductivity of {

both solid and liquid phases is used.

This procedure yields,:	 Keoila - •0261 (cal /(sec cm °F)) and K3sauin

.00261 (cal/(sec cn? °F)).

During a normal stop, a 90(ca1/(sec cros )) average heat flux is generated,

and thus a conservative expression for the location of the liquid solid boundary

X(t),	 is	 (from Eq.(15)) -

X(t) _ . 257 t + .00268 t2	 (23)

A normal stop takes 20 seconds and X(t 20) = 6,20 cm 	 2,44", which means
the brake must havea half width of less than approximately 2.44". 	 The pro-

r	 r posed design calls for a half width of ,375" and since the quantity that is

capable of being melted during a normal stop far exceeds the amount of fluoride

in this design, the assumed conservative value of K was not critical.

In summary, for the design proposed, no problem with the thermal conduct-
ivity of the fluoride, or with its complete melting is to be expected,

„
4y

r :,
i

,

n:

4
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APPENDIX III i

Calculation of Apparent Pressure of Contact (N/nn2 ), PV (N/m' -sec), and the
Frictional Kinetic Energy (Joules)

1. Calculation of Apparent Pressure of Contact (N/m2 ) A
4

Let:	 Ap - area of one pad

M,

AT - total area of the frictional pads on a stator

}
Friction Pad,	 -	 (u t _Din)

a

Ap	 _ 4 (4.142 - .782 .) [cm2 ] = 12.98 X 10'4 [u? /pad}
4.14 cm

AT	 = (12[pads/stator])(12.98X10'4[n?/pad])

0078 cm
A	 =

T	
.01558

'

D.78 cm dia 
ez

a
(' lb	 .	 g

4536 k 1( 9.81 m\	 )Applied Force = Pair	 8.1 ` in2( *,...s	 22	 lb	 f`	 2	 11
in	 f	 sec

Applied Force = Pair[psi] X 36.04ewtons --n
(Newtons)	 psr f

Pair[psi] X ewtons
<Applied Force =Apparent Pressure = si

A T -	 _ - _.01558	 [rr 2 ]'

NewtonsApparent Pressure[Newtons/rrP ] = Pair [psi] X (2.313 X 103 [	 ^^

,Y

\	 m2 psi

2. Calculation of PV (N/n2 -sec) Y
^	 3

PV = (Apparent Pressure [N/m2 ]) (WF-radl
sec JJ

/	 r	 N	 lPV = (Pair[p si])(R[rpm])(2.423X 10' 	-	 1)
`	 G n? - sec	 rpm - psi J)
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3. Calculation of Kinetic Energy (Joules)

C

x KE _	 Tw dt T1 WI AT

i 1

I

n
Joues

KE	 C.142[	 X
ft-lbtlrpm-sec])

T,[ft-lb,]W[rpm] AT[sec]
3_l

" •	 A delta t of two seconds was used, yielding

s
KE rs (.284	 l X

[ 

Joule
ft-lb -rpnij/ T 1 [ft-lbf ] Wt [rpm]`
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