991 research outputs found

    Novel Molecular Architectures Developed for Improved Solid Polymer Electrolytes for Lithium Polymer Batteries

    Get PDF
    Lithium-based polymer batteries for aerospace applications need the ability to operate in temperatures ranging from -70 to 70 C. Current state-of-the-art solid polymer electrolytes (based on amorphous polyethylene oxide, PEO) have acceptable ionic conductivities (10-4 to 10-3 S/cm) only above 60 C. Higher conductivity can be achieved in the current systems by adding solvent or plasticizers to the solid polymer to improve ion transport. However, this can compromise the dimensional and thermal stability of the electrolyte, as well as compatibility with electrode materials. One of NASA Glenn Research Center's objectives in the PERS program is to develop new electrolytes having unique molecular architectures and/or novel ion transport mechanisms, leading to good ionic conductivity at room temperature and below without solvents or plasticizers

    Managing the Socially Marginalized: Attitudes Towards Welfare, Punishment and Race

    Get PDF
    Welfare and incarceration policies have converged to form a system of governance over socially marginalized groups, particularly racial minorities. In both of these policy areas, rehabilitative and social support objectives have been replaced with a more punitive and restrictive system. The authors examine the convergence in individual-level attitudes concerning welfare and criminal punishment, using national survey data. The authors\u27 analysis indicates a statistically significant relationship between punitive attitudes toward welfare and punishment. Furthermore, accounting for the respondents\u27 racial attitudes explains the bivariate relationship between welfare and punishment. Thus, racial attitudes seemingly link support for punitive approaches to opposition to welfare expenditures. The authors discuss the implications of this study for welfare and crime control policies by way of the conclusion

    Excitations in confined helium

    Full text link
    We design models for helium in matrices like aerogel, Vycor or Geltech from a manifestly microscopic point of view. For that purpose, we calculate the dynamic structure function of 4He on Si substrates and between two Si walls as a function of energy, momentum transfer, and the scattering angle. The angle--averaged results are in good agreement with the neutron scattering data; the remaining differences can be attributed to the simplified model used here for the complex pore structure of the materials. A focus of the present work is the detailed identification of coexisting layer modes and bulk--like excitations, and, in the case of thick films, ripplon excitations. Involving essentially two--dimensional motion of atoms, the layer modes are sensitive to the scattering angle.Comment: Phys. Rev. B (2003, in press

    Review of Orbiter Flight Boundary Layer Transition Data

    Get PDF
    In support of the Shuttle Return to Flight program, a tool was developed to predict when boundary layer transition would occur on the lower surface of the orbiter during reentry due to the presence of protuberances and cavities in the thermal protection system. This predictive tool was developed based on extensive wind tunnel tests conducted after the loss of the Space Shuttle Columbia. Recognizing that wind tunnels cannot simulate the exact conditions an orbiter encounters as it re-enters the atmosphere, a preliminary attempt was made to use the documented flight related damage and the orbiter transition times, as deduced from flight instrumentation, to calibrate the predictive tool. After flight STS-114, the Boundary Layer Transition Team decided that a more in-depth analysis of the historical flight data was needed to better determine the root causes of the occasional early transition times of some of the past shuttle flights. In this paper we discuss our methodology for the analysis, the various sources of shuttle damage information, the analysis of the flight thermocouple data, and how the results compare to the Boundary Layer Transition prediction tool designed for Return to Flight

    Ground-state properties of the spin-1/2 antiferromagnetic Heisenberg model on the triangular lattice: A variational study based on entangled-plaquette states

    Full text link
    We study, on the basis of the general entangled-plaquette variational ansatz, the ground-state properties of the spin-1/2 antiferromagnetic Heisenberg model on the triangular lattice. Our numerical estimates are in good agreement with available exact results and comparable, for large system sizes, to those computed via the best alternative numerical approaches, or by means of variational schemes based on specific (i.e., incorporating problem dependent terms) trial wave functions. The extrapolation to the thermodynamic limit of our results for lattices comprising up to N=324 spins yields an upper bound of the ground-state energy per site (in units of the exchange coupling) of −0.5458(2)-0.5458(2) [−0.4074(1)-0.4074(1) for the XX model], while the estimated infinite-lattice order parameter is 0.3178(5)0.3178(5) (i.e., approximately 64% of the classical value).Comment: 8 pages, 3 tables, 2 figure

    Influence of Energy Intake During Lactation on Subsequent Gestation, Lactation and Postweaning Performance of Sows

    Get PDF
    Forty-four second parity crossbred sows were used to determine (1) the effect of energy intake during their first lactation (Lac 1) on subsequent reproductive performance from re-breeding to farrowing and (2) the effect of energy intake during two successive lactations on performance during the second lactation (Lac 2) and post-weaning periods. Sows received 8 (Lo) or 16 (Hi) Meal of metabolizable energy (ME)/d during Lac 1 and 5.4 Mcal of ME/d during the subsequent gestation

    Piecing Together the American Voting Puzzle: How Votersâ Personalities and Judgments of Issue Importance Mattered in the 2016 Presidential Election

    Full text link
    In the wake of the 2016 election, which surprised pundits and voters on both the left and the right, there has been renewed interest in understanding what predicts American votersâ choices. In this article, we investigate the roles of personality and issue importance in how people voted in the 2016 U.S. election. In this longitudinal study of 403 MTurk workers who voted in the election, we assessed the relations between personality (openness, social dominance orientation, and national identity importance) and issue importance (group rights and social justice, economic rights, and individual and national rights), and voting for Clinton or Trump. Our results indicate that both individual differences and issue importance as measured in July 2016 predicted votes in November. We also found that the links between personality and voting were mediated by issue importance. Implications for political psychology and the study of personality, campaign issues, and voting behavior are discussed.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146841/1/asap12157.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146841/2/asap12157_am.pd

    Strong interconversion of non-polar phonons and Josephson plasma oscillations induced by equilibrium Josephson currents in high T_c superconductors

    Full text link
    We analyze consequences of dynamical modulations of Josephson current by non-polar lattice mode in the Josephson junction barrier. In the high TcT_c junctions, the effect of such modulations can be anomalously strong due to the proximity of the insulating barrier to the superconducting state. Accordingly, the interconversion of sound (as well as other non-polar phonons) and the Josephson plasma oscillations mediated by stationary Josephson currents, which may be present in the junction due to various reasons, becomes possible. We suggest that this effect can be employed for imaging of the stationary Josephson currents. Estimates of the effect are given.Comment: 11 RevTeX pages, no figure
    • …
    corecore