44,044 research outputs found
Fast scan control for deflection type mass spectrometers
A high speed scan device is reported that allows most any scanning sector mass spectrometer to measure preselected gases at a very high sampling rate. The device generates a rapidly changing staircase output which is applied to the accelerator of the spectrometer and it also generates defocusing pulses that are applied to one of the deflecting plates of the spectrometer which when shorted to ground deflects the ion beam away from the collector. A defocusing pulse occurs each time there is a change in the staircase output
Manufacture of DPFC-DMS polymer in the SKG range
BPFC-DMS block copolymers were synthesized on a pre-pilot scale (i.e., to 5 Kg lots) and subsequently fabricated into clear, colorless films. Details of the synthesis procedures, property determinations, and film casting techniques are presented. Solubility, viscosity and molecular weight characteristics of the resulting product are reported
Flammability screening tests of resins
Selected flammability characteristics of glass cloth laminates of thermosetting resins are evaluated. A protocol for the evaluation of the flammability hazards presented by glass cloth laminates of thermosetting resins and the usefulness of that protocol with two laminates are presented. The glass laminates of an epoxy resin, M-751 are evaluated for: (1) determination of smoke generation from the laminates; (2) analysis of products of oxidative degradation of the laminates; (3) determination of minimum oxygen necessary to maintain flaming oxidation; (4) evaluation of toxicological hazards
Assessment worlds colliding? Negotiating between discourses of assessment on an online open course
Using the badged open course, Taking your first steps into Higher Education, this case study examines how assessment on online open courses draws on concepts of assessment used within formal and informal learning. Our experience was that assessment used within open courses, such as massive open online courses, is primarily determined by the requirements of quality assurance processes to award a digital badge or statement of participation as well as what is technologically possible. However, this disregards much recent work in universities that use assessment in support of learning. We suggest that designers of online open courses should pay greater attention to the relationship of assessment and learning to improve participant course completion
Universal Markovian reduction of Brownian particle dynamics
Non-Markovian processes can often be turned Markovian by enlarging the set of
variables. Here we show, by an explicit construction, how this can be done for
the dynamics of a Brownian particle obeying the generalized Langevin equation.
Given an arbitrary bath spectral density , we introduce an orthogonal
transformation of the bath variables into effective modes, leading stepwise to
a semi-infinite chain with nearest-neighbor interactions. The transformation is
uniquely determined by and defines a sequence
of residual spectral densities describing the
interaction of the terminal chain mode, at each step, with the remaining bath.
We derive a simple, one-term recurrence relation for this sequence, and show
that its limit is the quasi-Ohmic expression provided by the Rubin model of
dissipation. Numerical calculations show that, irrespective of the details of
, convergence is fast enough to be useful in practice for an effective
Markovian reduction of quantum dissipative dynamics
Memory-induced anomalous dynamics: emergence of diffusion, subdiffusion, and superdiffusion from a single random walk model
We present a random walk model that exhibits asymptotic subdiffusive,
diffusive, and superdiffusive behavior in different parameter regimes. This
appears to be the first instance of a single random walk model leading to all
three forms of behavior by simply changing parameter values. Furthermore, the
model offers the great advantage of analytic tractability. Our model is
non-Markovian in that the next jump of the walker is (probabilistically)
determined by the history of past jumps. It also has elements of intermittency
in that one possibility at each step is that the walker does not move at all.
This rich encompassing scenario arising from a single model provides useful
insights into the source of different types of asymptotic behavior
Anomalous diffusion in correlated continuous time random walks
We demonstrate that continuous time random walks in which successive waiting
times are correlated by Gaussian statistics lead to anomalous diffusion with
mean squared displacement ~t^{2/3}. Long-ranged correlations of the
waiting times with power-law exponent alpha (0<alpha<=2) give rise to
subdiffusion of the form ~t^{alpha/(1+alpha)}. In contrast correlations
in the jump lengths are shown to produce superdiffusion. We show that in both
cases weak ergodicity breaking occurs. Our results are in excellent agreement
with simulations.Comment: 6 pages, 6 figures. Slightly revised version, accepted to J Phys A as
a Fast Track Communicatio
Localization Transition of Biased Random Walks on Random Networks
We study random walks on large random graphs that are biased towards a
randomly chosen but fixed target node. We show that a critical bias strength
b_c exists such that most walks find the target within a finite time when
b>b_c. For b<b_c, a finite fraction of walks drifts off to infinity before
hitting the target. The phase transition at b=b_c is second order, but finite
size behavior is complex and does not obey the usual finite size scaling
ansatz. By extending rigorous results for biased walks on Galton-Watson trees,
we give the exact analytical value for b_c and verify it by large scale
simulations.Comment: 4 pages, includes 4 figure
- …