48,865 research outputs found

    QCD Propagators at non-vanishing temperatures

    Full text link
    We investigate the behaviour of the gluon and ghost propagators, especially their infrared properties, at non-vanishing temperatures. To this end we solve their Dyson-Schwinger equations on a torus and find an infrared enhanced ghost propagator and an infrared vanishing gluon propagator.Comment: 2 pages, 2 figures; talk given by B.G. at the Erice summer school on Nuclear Physics, Sept. 16 -- 24, 2003, Erice, Ital

    Near-infrared polarimetric observations of the afterglow of GRB 000301C

    Get PDF
    Based on near-infrared polarimetric observations we constrain the degree of linear polarization of the afterglow light of GRB 000301C to less than 30% 1.8 days after the burst.Comment: To appear in: Proc. 20th Texas Symposium on Relativistic Astrophysics, eds. J. C. Wheeler and H. Marte

    Observation of the Faraday effect via beam deflection in a longitudinal magnetic field

    Get PDF
    We report the observation of the magnetic field induced circular differential deflection of light at the interface of a Faraday medium. The difference in the angles of refraction or reflection between the two circular polarization components is a function of the magnetic field strength and the Verdet constant. The reported phenomena permit the observation of the Faraday effect not via polarization rotation in transmission, but via changes in the propagation direction in refraction or in reflection. An unpolarized light beam is predicted to split into its two circular polarization components. The light deflection arises within a few wavelengths at the interface and is therefore independent of pathlength

    High-Resolution NIR Observations of the Circumstellar Disk System in the Bok Globule CB 26

    Full text link
    We report on results of near-infrared and optical observations of the mm disk embedded in the Bok globule CB 26 (Launhardt & Sargent 2001). The near-infrared images show a bipolar reflection nebula with a central extinction lane which coincides with the mm disk. Imaging polarimetry of this object yielded a polarization pattern which is typical for a young stellar object surrounded by a large circumstellar disk and an envelope, seen almost edge-on. The strong linear polarization in the bipolar lobes is caused by single scattering at dust grains and allowed to locate the illuminating source which coincides with the center of the mm disk. The spectral energy distribution of the YSO embedded in CB 26 resembles that of a ClassI source with a luminosity of 0.5 L_sun.Using the pre-main-sequence evolutionary tracks and the stellar mass inferred from the rotation curve of the disk, we derive an age of the system of <10^6 yr. H_alpha and [SII] narrow-band imaging as well as optical spectroscopy revealed an Herbig-Haro object 6.15 arcmin northwest of CB 26 YSO 1, perfectly aligned with the symmetry axis of the bipolar nebula. This Herbig-Haro object (HH 494) indicates ongoing accretion and outflow activity in CB 26 YSO 1. Its excitation characteristics indicate that the Herbig-Haro flow is propagating into a low-density environment. We suggest that CB 26 YSO 1 represents the transition stage between embedded protostellar accretion disks and more evolved protoplanetary disks around T Tauri stars in an undisturbed environment.Comment: 21 pages, 6 figures (reduced resolution), ApJ accepte

    Dynamical role of anyonic excitation statistics in rapidly rotating Bose gases

    Full text link
    We show that for rotating harmonically trapped Bose gases in a fractional quantum Hall state, the anyonic excitation statistics in the rotating gas can effectively play a {\em dynamical} role. For particular values of the two-dimensional coupling constant g=2π2(2k1)/mg = -2\pi \hbar^2 (2k-1)/m, where kk is a positive integer, the system becomes a noninteracting gas of anyons, with exactly obtainable solutions satisfying Bogomol'nyi self-dual order parameter equations. Attractive Bose gases under rapid rotation thus can be stabilized in the thermodynamic limit due to the anyonic statistics of their quasiparticle excitations.Comment: 4 pages of RevTex4; as published in Physical Review Letter

    Disentangling the near infrared continuum spectral components of the inner 500 pc of Mrk 573: two-dimensional maps

    Get PDF
    We present a near infrared study of the spectral components of the continuum in the inner 500×\times500 pc2^2 of the nearby Seyfert galaxy Mrk573 using adaptive optics near-infrared integral field spectroscopy with the instrument NIFS of the Gemini North Telescope at a spatial resolution of \sim50 pc. We performed spectral synthesis using the {\sc starlight} code and constructed maps for the contributions of different age components of the stellar population: young (age100age\leq100 Myr), young-intermediate (100<age700100<age\leq700 Myr), intermediate-old (700700 Myr 22 Gyr) to the near-IR K-band continuum, as well as their contribution to the total stellar mass. We found that the old stellar population is dominant within the inner 250 pc, while the intermediate age components dominate the continuum at larger distances. A young stellar component contributes up to \sim20% within the inner \sim70 pc, while hot dust emission and featureless continuum components are also necessary to fit the nuclear spectrum, contributing up to 20% of the K-band flux there. The radial distribution of the different age components in the inner kiloparsec of Mrk573 is similar to those obtained by our group for the Seyfert galaxies Mrk1066, Mrk1157 and NGC1068 in previous works using a similar methodology. Young stellar populations (\leq100 Myr) are seen in the inner 200-300 pc for all galaxies contributing with \ge20% of the K-band flux, while the near-IR continuum is dominated by the contribution of intermediate-age stars (t=t=100 Myr-2 Gyr) at larger distances. Older stellar populations dominate in the inner 250 pc
    corecore