856 research outputs found

    BE YOUR OWN BOSS: A CHRONIC DISEASE SELF-MANAGEMENT PROGRAM

    Get PDF
    poster abstractObjective: Describe the pilot of a peer-led chronic disease self-management workshop for youth aged 13-24 years old. Background: Fifteen to eighteen percent of children in the United States live with a chronic health condition (Perrin et al., Journal of the American Medical Association 2007, 297:2755). The Stanford chronic disease self-management program (CDSMP) has demonstrated improved self-care and health outcomes in older adults. Alberta Health Services has adapted this program from Stanford University for youth and young adults. CYACC is col-laborating with Alberta to evaluate the effectiveness of the adapted version in adolescents and young adults. Methods: Train the trainer sessions were completed to develop an initial cadre of lay leaders to implement the workshop sessions. Participants with any chronic condition attend 2 hour peer-led sessions once per week for six weeks. During the sessions, individuals with a variety of chronic diseases learn the skills needed in self-management of their condition and mainte-nance of general well-being and life’s activities. Data is collected on self-efficacy, pain, adherence, and other outcomes through pre- and post- as-sessment surveys. Results: Fourteen individuals participated in the pilot phase of the pro-gram; 5 in Lafayette, IN and 8 in Indianapolis, IN. A total of 14 pre-surveys were collected, while 10 post-surveys were collected. Analyses of the sur-veys show beneficial topics , while also indicating which topics should receive additional focus. Areas of the program identified as needing attention include recruitment, risk management, transportation issues, participant dropout rates, logistics of workshops, continued training of lay leaders, and stand-ardization of survey responses. Conclusion: The pilot study identified the importance and need for a self-management program for youth and young adults with chronic conditions. This program has the potential to improve health and self-management in the study population. Limitations of the program were addressed and will be improved for the next round of workshops

    Spin gating electrical current

    Full text link
    We use an aluminium single electron transistor with a magnetic gate to directly quantify the chemical potential anisotropy of GaMnAs materials. Uniaxial and cubic contributions to the chemical potential anisotropy are determined from field rotation experiments. In performing magnetic field sweeps we observe additional isotropic magnetic field dependence of the chemical potential which shows a non-monotonic behavior. The observed effects are explained by calculations based on the kp\mathbf{k}\cdot\mathbf{p} kinetic exchange model of ferromagnetism in GaMnAs. Our device inverts the conventional approach for constructing spin transistors: instead of spin-transport controlled by ordinary gates we spin-gate ordinary charge transport.Comment: 5 pages, 4 figure

    Reconfigurable Boolean Logic using Magnetic Single-Electron Transistors

    Full text link
    We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET). The device consists of an aluminium single-electron transistors with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer which induce a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network

    Intrinsic magnetic refrigeration of a single electron transistor

    Get PDF
    In this work, we show that aluminium doped with low concentrations of magnetic impurities can be used to fabricate quantum devices with intrinsic cooling capabilities. We fabricate single electron transistors made of aluminium doped with 2% Mn by using a standard multi angle evaporation technique and show that the quantity of metal used to fabricate the devices generates enough cooling power to achieve a drop of 160 mK in the electron temperature at the base temperature of our cryostat (300 mK). The cooling mechanism is based on the magneto-caloric effect from the diluted Mn moments

    T2 lesion location really matters: a 10 year follow-up study in primary progressive multiple sclerosis

    Get PDF
    Objectives: Prediction of long term clinical outcome in patients with primary progressive multiple sclerosis (PPMS) using imaging has important clinical implications, but remains challenging. We aimed to determine whether spatial location of T2 and T1 brain lesions predicts clinical progression during a 10-year follow-up in PPMS. Methods: Lesion probability maps of the T2 and T1 brain lesions were generated using the baseline scans of 80 patients with PPMS who were clinically assessed at baseline and then after 1, 2, 5 and 10 years. For each patient, the time (in years) taken before bilateral support was required to walk (time to event (TTE)) was used as a measure of progression rate. The probability of each voxel being ‘lesional’ was correlated with TTE, adjusting for age, gender, disease duration, centre and spinal cord cross sectional area, using a multiple linear regression model. To identify the best, independent predictor of progression, a Cox regression model was used. Results: A significant correlation between a shorter TTE and a higher probability of a voxel being lesional on T2 scans was found in the bilateral corticospinal tract and superior longitudinal fasciculus, and in the right inferior fronto-occipital fasciculus (p<0.05). The best predictor of progression rate was the T2 lesion load measured along the right inferior fronto-occipital fasciculus (p=0.016, hazard ratio 1.00652, 95% CI 1.00121 to 1.01186). Conclusion: Our results suggest that the location of T2 brain lesions in the motor and associative tracts is an important contributor to the progression of disability in PPMS, and is independent of spinal cord involvement

    ProOpDB: Prokaryotic Operon DataBase

    Get PDF
    The Prokaryotic Operon DataBase (ProOpDB, http://operons.ibt.unam.mx/OperonPredictor) constitutes one of the most precise and complete repositories of operon predictions now available. Using our novel and highly accurate operon identification algorithm, we have predicted the operon structures of more than 1200 prokaryotic genomes. ProOpDB offers diverse alternatives by which a set of operon predictions can be retrieved including: (i) organism name, (ii) metabolic pathways, as defined by the KEGG database, (iii) gene orthology, as defined by the COG database, (iv) conserved protein domains, as defined by the Pfam database, (v) reference gene and (vi) reference operon, among others. In order to limit the operon output to non-redundant organisms, ProOpDB offers an efficient method to select the most representative organisms based on a precompiled phylogenetic distances matrix. In addition, the ProOpDB operon predictions are used directly as the input data of our Gene Context Tool to visualize their genomic context and retrieve the sequence of their corresponding 5′ regulatory regions, as well as the nucleotide or amino acid sequences of their genes

    Enhanced GRK2 expression and desensitization of betaAR vasodilatation in hypertensive patients.

    Get PDF
    Increased levels of G protein coupled receptor kinase GRK2 appear to participate in hypertension presumably through the desensitization of beta adrenergic receptors (betaARs) that mediate vasodilatation. There are contrasting data on the occurrence of betaAR desensitization in the vasculature, we therefore investigated betaAR vasodilatation and desensitization in normotensives and in hypertensive humans. In blood lymphocytes, we assessed betaAR signaling and GRK2 expression and found betaAR signaling alterations and, consistent with desensitization, ncreased GRK2 levels in hypertensives. We studied in vivo vasodilatation to the betaAR agonist isoproterenol (ISO) injected in the brachia artery in control conditions and during the concomitant infusion of heparin, a known in vitro nonspecific GRK inhibitor. ISO induced a dose-dependent vasorelaxation that was attenuated in hypertensives indicating a loss of betaAR signaling. Intra-arterial infusion of heparin nhibited lymphocyte GRK2 activity and prevented desensitization of betaAR vasodilatation in normotensives. In hypertensives, heparin restored vasodilatation to ISO, to levels observed in normotensives. Our results suggest that betaAR desensitization does indeed occur at the vascular levels in vivo, and that heparin by acting as a GRK inhibitor prevents this in normotensives and restores impaired betaAR vasodilation in hypertensives. We conclude that desensitization participates to impaired betaAR vasodilation in hypertension

    Ongoing microstructural changes in the cervical cord underpin disability progression in early primary progressive multiple sclerosis

    Get PDF
    Background: Pathology in the spinal cord of patients with primary progressive multiple sclerosis (PPMS) contributes to disability progression. We previously reported abnormal Q-space imaging (QSI)-derived indices in the spinal cord at baseline in patients with early PPMS, suggesting early neurodegeneration. / Objective: The aim was to investigate whether changes in spinal cord QSI over 3 years in the same cohort are associated with disability progression and if baseline QSI metrics predict clinical outcome. / Methods: Twenty-three PPMS patients and 23 healthy controls recruited at baseline were invited for follow-up cervical cord 3T magnetic resonance imaging (MRI) and clinical assessment after 1 year and 3 years. Cord cross-sectional area (CSA) and QSI measures were obtained, together with standard brain MRI measures. Mixed-effect models assessed MRI changes over time and their association with clinical changes. Linear regression identified baseline MRI indices associated with disability at 3 years. / Results: Over time, patients deteriorated clinically and showed an increase in cord QSI indices of perpendicular diffusivity that was associated with disability worsening, independently of the decrease in CSA. Higher perpendicular diffusivity and lower CSA at baseline predicted worse disability at 3 years. Conclusion: Increasing spinal cord perpendicular diffusivity may indicate ongoing neurodegeneration, which underpins disability progression in PPMS, independently of the development of spinal cord atrophy
    corecore