1,219 research outputs found

    Calorimetric and acoustic study of binary mixtures containing an isomeric chlorobutane and butyl ethyl ether or methyl tert-butyl ether

    Get PDF
    Densities and speeds of sound in the temperature range 283.15-313.15 K have been measured for the binary mixtures formed by an isomeric chlorobutane (1-chlorobutane, 2-chlorobutane, 1-chloro-2-methylpropane, or 2-chloro-2-methylpropane) and butyl ethyl ether or methyl tert-butyl ether. Excess isentropic compressibilities were calculated from the experimental data. Excess enthalpies at T = 298.15 K are also included for the same binary mixtures. All these properties provide an insight into the nature of interactions operating on the present systems. Finally, the Prigogine-Flory-Patterson theory has been used to analyze the H E results and to estimate the isentropic compressibility values of the mixtures at T = 298.15 K

    Optical Bistability in Nonlinear Optical Coupler with Negative Index Channel

    Full text link
    We discuss a novel kind of nonlinear coupler with one channel filled with a negative index material (NIM). The opposite directionality of the phase velocity and the energy flow in the NIM channel facilitates an effective feedback mechanism that leads to optical bistability and gap soliton formation

    Long-lived quantum coherence in photosynthetic complexes at physiological temperature

    Full text link
    Photosynthetic antenna complexes capture and concentrate solar radiation by transferring the excitation to the reaction center which stores energy from the photon in chemical bonds. This process occurs with near-perfect quantum efficiency. Recent experiments at cryogenic temperatures have revealed that coherent energy transfer - a wavelike transfer mechanism - occurs in many photosynthetic pigment-protein complexes (1-4). Using the Fenna-Matthews-Olson antenna complex (FMO) as a model system, theoretical studies incorporating both incoherent and coherent transfer as well as thermal dephasing predict that environmentally assisted quantum transfer efficiency peaks near physiological temperature; these studies further show that this process is equivalent to a quantum random walk algorithm (5-8). This theory requires long-lived quantum coherence at room temperature, which never has been observed in FMO. Here we present the first evidence that quantum coherence survives in FMO at physiological temperature for at least 300 fs, long enough to perform a rudimentary quantum computational operation. This data proves that the wave-like energy transfer process discovered at 77 K is directly relevant to biological function. Microscopically, we attribute this long coherence lifetime to correlated motions within the protein matrix encapsulating the chromophores, and we find that the degree of protection afforded by the protein appears constant between 77 K and 277 K. The protein shapes the energy landscape and mediates an efficient energy transfer despite thermal fluctuations. The persistence of quantum coherence in a dynamic, disordered system under these conditions suggests a new biomimetic strategy for designing dedicated quantum computational devices that can operate at high temperature.Comment: PDF files, 15 pages, 3 figures (included in the PDF file

    Neutron diffraction and magnetocaloric effect studies of MnFe 1-x Co x P series of solid solutions

    No full text
    International audienceMnFe 1-x Co x P intermetallic series of solid solutions (0.4<x<0.6) have been studied by means of powder neutron diffraction in 10−320 K temperature range. Rietveld analysis pointed out that Co 2 P-type orthorhombic crystal structure (SG: Pnma) presents for all series. Helicoidal incommensurate antiferromagnetic structure with propagation vector q = [0, 0, q] were evidenced for all compounds at low temperature range. The q value decreases with cobalt content and the second order polynomial q(x) it was evidenced, that is found well correlated with this dependence. Magnetic moments values of µ Mn =3.34 µ B and µ (Fe,Co) =0.06 µ B were determined from neutron diffraction refinements for x=0.4 at 10 K. In addition, magnetic interactions in relations with electronic band structure calculations of MnFe 1-x Co x P were presented and discussed reference to previous published data. Finally, magnetocaloric properties for selected compounds of the MnFe 1-x Co x P and MnFe 0.45 Co 0.45 P 0.9 Ge 0.1 series of compounds are presented

    Secuenciación del ITS-1 del ADN ribosomal de Galba truncatula (Gastropoda, Lymnaeidae) y su impacto potencial en la transmisión de la fascioliasis en Mendoza, Argentina

    Get PDF
    Sequencing of the rDNA ITS–1 proved that the lymnaeid snail species Galba truncatula is present in Argentina and that it belongs to the haplotype HC, the same as that responsible for the fascioliasis transmission in the human hyperendemic area with the highest human prevalences and intensities known, the Northern Bolivian Altiplano.La secuenciación del ITS–1 del ADNr demostró que la especie de gasterópodo lymnaeido Galba truncatula se encuentra en Argentina y que pertenece al haplotipo HC, el mismo responsable de la transmisión de la fascioliasis en el área de hiperendemia humana con las mayores prevalencias e intensidades de fascioliasis conocidas, el Altiplano Norte Boliviano

    Isolation and characterization of feline dental pulp stem cells

    Get PDF
    Objectives The aim of this study was to isolate feline dental pulp stem cells (fDPSCs) and characterize their clonogenic and proliferative abilities, as well as their multipotency, immunophenotype and cytogenetic stability. Methods Dental pulp was isolated by explant culture from two cats &lt;1 year old at post mortem. Their clonogenicity was characterized using a colony-forming unit fibroblast assay, and their proliferative ability was quantified with a doubling time assay in passages 2, 4 and 6 (P2, P4 and P6, respectively). Multipotency was characterized with an in vitro trilineage differentiation assay in P2, and cells were immunophenotyped in P4 by flow cytometry. Chromosomic stability was evaluated by cytogenetic analysis in P2, P4 and P6. Results The fDPSCs displayed spindle and epithelial-like morphologies. Isolated cells showed a marked clonogenic capacity and doubling time was maintained from P2 to P6. Trilineage differentiation was obtained in one sample, while the other showed osteogenic and chondrogenic differentiation. Immunophenotypic analysis showed fDPSCs were CD45−, CD90+ and CD44+. Structural and numerical cytogenetic aberrations were observed in P2–P4. Conclusions and relevance In this study, fDPSCs from two cats were isolated by explant culture and immunophenotyped. Cells displayed clonogenic and proliferative ability, and multipotency in vitro, and signs of chromosomic instability were observed. Although a larger study is needed to confirm these results, this is the first report of fDPSC isolation and in vitro characterization

    Sistema para Sensoriamento de Potássio no Solo.

    Get PDF
    bitstream/CNPDIA/10447/1/BPD09_2004.pd
    • …
    corecore