87 research outputs found

    Combined PDGFR and HDAC inhibition overcomes PTEN disruption in Chordoma

    Get PDF
    Background: The majority of chordomas show activation of the platelet-derived growth factor receptor (PDGFR). Based on in vitro intertumoral variation in response to recombinant PDGF protein and PDGFR inhibition, and variable tumor response to imatinib, we hypothesized that chordomas resistant to PDGFR inhibition may possess downstream activation of the pathway. Methods: Molecular profiling was performed on 23 consecutive chordoma primary tissue specimens. Primary cultures established from 20 of the 23 specimens, and chordoma cell lines, UCH-1 and UCH-2, were used for in vitro experiments. Results: Loss of heterozygosity (LOH) at the phosphatase and tensin homolog (PTEN) locus was observed in 6 specimens (26%). PTEN disruption statistically correlated with increased Ki-67 proliferation index, an established marker of poor outcome for chordoma. Compared to wild type, PTEN deficient chordomas displayed increased proliferative rate, and responded less favorably to PDGFR inhibition. PTEN gene restoration abrogated this growth advantage. Chordomas are characterized by intratumoral hypoxia and local invasion, and histone deacetylase (HDAC) inhibitors are capable of attenuating both hypoxic signaling and cell migration. The combination of PDGFR and HDAC inhibition effectively disrupted growth and invasion of PTEN deficient chordoma cells. Conclusions: Loss of heterozygosity of the PTEN gene seen in a subset of chordomas is associated with aggressive in vitro behavior and strongly correlates with increased Ki-67 proliferative index. Combined inhibition of PDGFR and HDAC attenuates proliferation and invasion in chordoma cells deficient for PTEN

    Effects of simulated altitude (normobaric hypoxia) on cardiorespiratory parameters and circulating endothelial precursors in healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circulating Endothelial Precursors (PB-EPCs) are involved in the maintenance of the endothelial compartment being promptly mobilized after injuries of the vascular endothelium, but the effects of a brief normobaric hypoxia on PB-EPCs in healthy subjects are scarcely studied.</p> <p>Methods</p> <p>Clinical and molecular parameters were investigated in healthy subjects (n = 8) in basal conditions (T0) and after 1 h of normobaric hypoxia (T1), with Inspiratory Fraction of Oxygen set at 11.2% simulating 4850 mt of altitude. Blood samples were obtained at T0 and T1, as well as 7 days after hypoxia (T2).</p> <p>Results</p> <p>In all studied subjects we observed a prompt and significant increase in PB-EPCs, with a return to basal value at T2. The induction of hypoxia was confirmed by Alveolar Oxygen Partial Pressure (PAO<sub>2</sub>) and Spot Oxygen Saturation decreases. Heart rate increased, but arterial pressure and respiratory response were unaffected. The change in PB-EPCs percent from T0 to T1 was inversely related to PAO<sub>2 </sub>at T1. Rapid (T1) increases in serum levels of hepatocyte growth factor and erythropoietin, as well as in cellular PB-EPCs-expression of Hypoxia Inducible Factor-1α were observed.</p> <p>Conclusion</p> <p>In conclusion, the endothelial compartment seems quite responsive to standardized brief hypoxia, possibly important for PB-EPCs activation and recruitment.</p

    Non-Agonistic Bivalent Antibodies That Promote c-MET Degradation and Inhibit Tumor Growth and Others Specific for Tumor Related c-MET

    Get PDF
    The c-MET receptor has a function in many human cancers and is a proven therapeutic target. Generating antagonistic or therapeutic monoclonal antibodies (mAbs) targeting c-MET has been difficult because bivalent, intact anti-Met antibodies frequently display agonistic activity, necessitating the use of monovalent antibody fragments for therapy. By using a novel strategy that included immunizing with cells expressing c-MET, we obtained a range of mAbs. These c-MET mAbs were tested for binding specificity and anti-tumor activity using a range of cell-based techniques and in silico modeling. The LMH 80 antibody bound an epitope, contained in the small cysteine-rich domain of c-MET (amino acids 519–561), that was preferentially exposed on the c-MET precursor. Since the c-MET precursor is only expressed on the surface of cancer cells and not normal cells, this antibody is potentially tumor specific. An interesting subset of our antibodies displayed profound activities on c-MET internalization and degradation. LMH 87, an antibody binding the loop connecting strands 3d and 4a of the 7-bladed β-propeller domain of c-MET, displayed no intrinsic agonistic activity but promoted receptor internalization and degradation. LMH 87 inhibited HGF/SF-induced migration of SK-OV-3 ovarian carcinoma cells, the proliferation of A549 lung cancer cells and the growth of human U87MG glioma cells in a mouse xenograft model. These results indicate that c-MET antibodies targeting epitopes controlling receptor internalization and degradation provide new ways of controlling c-MET expression and activity and may enable the therapeutic targeting of c-MET by intact, bivalent antibodies

    Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocyte growth factor (HGF) and its receptor c-MET are commonly expressed in malignant gliomas and embryonic neuroectodermal tumors including medulloblastoma and appear to play an important role in the growth and dissemination of these malignancies. Dependent on cell context and the involvement of specific downstream effectors, both pro- and anti-apoptotic effects of HGF have been reported.</p> <p>Methods</p> <p>Human medulloblastoma cells were treated with HGF for 24–72 hours followed by death receptor ligand TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) for 24 hours. Cell death was measured by MTT and Annexin-V/PI flow cytometric analysis. Changes in expression levels of targets of interest were measured by Northern blot analysis, quantitative reverse transcription-PCR, Western blot analysis as well as immunoprecipitation.</p> <p>Results</p> <p>In this study, we show that HGF promotes medulloblastoma cell death induced by TRAIL. TRAIL alone triggered apoptosis in DAOY cells and death was enhanced by pre-treating the cells with HGF for 24–72 h prior to the addition of TRAIL. HGF (100 ng/ml) enhanced TRAIL (10 ng/ml) induced cell death by 36% (<it>P </it>< 0.001). No cell death was associated with HGF alone. Treating cells with PHA-665752, a specific c-Met receptor tyrosine kinase inhibitor, significantly abrogated the enhancement of TRAIL-induced cell death by HGF, indicating that its death promoting effect requires activation of its canonical receptor tyrosine kinase. Cell death induced by TRAIL+HGF was predominately apoptotic involving both extrinsic and intrinsic pathways as evidenced by the increased activation of caspase-3, 8, 9. Promotion of apoptosis by HGF occurred via the increased expression of the death receptor DR5 and enhanced formation of death-inducing signal complexes (DISC).</p> <p>Conclusion</p> <p>Taken together, these and previous findings indicate that HGF:c-Met pathway either promotes or inhibits medulloblastoma cell death via pathway and context specific mechanisms.</p

    Mesenchymal Stem Cell Transition to Tumor-Associated Fibroblasts Contributes to Fibrovascular Network Expansion and Tumor Progression

    Get PDF
    Tumor associated fibroblasts (TAF), are essential for tumor progression providing both a functional and structural supportive environment. TAF, known as activated fibroblasts, have an established biological impact on tumorigenesis as matrix synthesizing or matrix degrading cells, contractile cells, and even blood vessel associated cells. The production of growth factors, cytokines, chemokines, matrix-degrading enzymes, and immunomodulatory mechanisms by these cells augment tumor progression by providing a suitable environment. There are several suggested origins of the TAF including tissue-resident, circulating, and epithelial-to-mesenchymal-transitioned cells.We provide evidence that TAF are derived from mesenchymal stem cells (MSC) that acquire a TAF phenotype following exposure to or systemic recruitment into adenocarcinoma xenograft models including breast, pancreatic, and ovarian. We define the MSC derived TAF in a xenograft ovarian carcinoma model by the immunohistochemical presence of 1) fibroblast specific protein and fibroblast activated protein; 2) markers phenotypically associated with aggressiveness, including tenascin-c, thrombospondin-1, and stromelysin-1; 3) production of pro-tumorigenic growth factors including hepatocyte growth factor, epidermal growth factor, and interleukin-6; and 4) factors indicative of vascularization, including alpha-smooth muscle actin, desmin, and vascular endothelial growth factor. We demonstrate that under long-term tumor conditioning in vitro, MSC express TAF-like proteins. Additionally, human MSC but not murine MSC stimulated tumor growth primarily through the paracrine production of secreted IL6.Our results suggest the dependence of in vitro Skov-3 tumor cell proliferation is due to the presence of tumor-stimulated MSC secreted IL6. The subsequent TAF phenotype arises from the MSC which ultimately promotes tumor growth through the contribution of microvascularization, stromal networks, and the production of tumor-stimulating paracrine factors

    Protein tyrosine phosphatases in glioma biology

    Get PDF
    Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas
    corecore